Author:
Dahia Elhadj,Hamidi Khaled
Abstract
<p>In this paper we introduce the concept of Lipschitz Pietsch-p-integral <br />mappings, (1≤p≤∞), between a metric space and a Banach space. We represent these mappings by an integral with respect to a vector<br />measure defined on a suitable compact Hausdorff space, obtaining in this way a rich factorization theory through the classical Banach spaces C(K), L_p(μ,K) and L_∞(μ,K). Also we show that this type of operators fits in the theory of composition Banach Lipschitz operator ideals. For p=∞, we characterize the Lipschitz Pietsch-∞-integral mappings by a factorization schema through a weakly compact operator. Finally, the relationship between these mappings and some well known Lipschitz operators is given.</p>
Publisher
Universitat Politecnica de Valencia
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献