Author:
Hassan Faisal,Qureshi Naseem Afzal,Khan Muhammad Zohaib,Khan Muhammad Ali,Soomro Abdul Salam,Imroz Aisha,Marri Hussain Bux
Abstract
Machine Learning (ML) is an Artificial Intelligence (AI) approach that allows systems to adapt to their environment based on past experiences. Machine Learning (ML) and Natural Language Processing (NLP) techniques are commonly used in sentiment analysis and Information Retrieval Techniques (IRT). This study supports the use of ML approaches, such as K-Means, to produce accurate outcomes in clustering and classification approaches. The main objective of this research is to explore the methods for sentiment classification and Information Retrieval Techniques (IRT). So, a combination of different machine learning algorithms is used with a dataset from amazon unlocked mobile reviews and telecom tweets to achieve better accuracy as it is crucial to consider the previous predictions related to sentiment classification and IRT. The datasets consist of user reviews ratings and algorithms utilized consist of K-Means Clustering algorithm, Logistic Regression (LR), Random Forest (RF), and Decision Tree (DT) algorithms. The amalgamation of each algorithm with the K-Means resulted in high levels of accuracy. Specifically, the K-Means combined with Logistic Regression (LR) yielded an accuracy rate of 99.98%. Similarly, the K-Means integrated with Random Forest (RF) resulted in an accuracy of 99.906%. Lastly, when the K-Means was merged with the Decision Tree (DT) Algorithm, the accuracy obtained was 99.83%.We exhibited that we could foresee efficient, effective, and accurate outcomes.
Publisher
Universitat Politecnica de Valencia
Subject
Materials Science (miscellaneous)
Reference77 articles.
1. Abad-Segura, E., González-Zamar, M.-D., Infante-Moro, J.C., & Ruipérez García, G. (2020). Sustainable management of digital transformation in higher education: Global research trends. Sustainability, 12(5), 2107. https://doi.org/10.3390/su12052107
2. Abualigah, L.M., Khader, A.T., & Hanandeh, E.S. (2018). A hybrid strategy for krill herd algorithm with harmony search algorithm to improve the data clustering? Intelligent Decision Technologies, 12(1), 3-14. https://doi.org/10.3233/IDT-170318
3. Alharbi, A.S.M., & de Doncker, E. (2019). Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information. Cognitive Systems Research, 54, 50-61. https://doi.org/10.1016/j.cogsys.2018.10.001
4. Arain, M.S., Khan, M.A., & Kalwar, M.A. (2020). Optimization of Target Calculation Method for Leather Skiving and Stamping: Case of Leather Footwear Industry. International Journal of Business Education and Management Studies (IJBEMS), 7(1), 15-30. https://www.ijbems.com/doc/IJBEMS-137.pdf
5. Baig, M.A., Shaikh, S.A., Khatri, K.K., Shaikh, M.A., Khan, M.Z., & Rauf, M.A. (2023). Prediction of Students Performance Level Using Integrated Approach of ML Algorithms. International Journal of Emerging Technologies in Learning, 18(1), 216-234. https://doi.org/10.3991/ijet.v18i01.35339
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献