TUNGSTEN CARBIDE NANOPOWDER SYNTHESIS UNDER THE EXPOSURE OF 24 GHZ GYROTRON RADIATION ON THE NANOCOMPOSITE OF THE W-C SYSTEM OBTAINED IN A THERMAL PLASMA

Author:

Vodopyanov Alexander1ORCID,Samokhin Andrey2,Aleksev Nikolay2,Sinayskiy Mikhail2,Sorokin Andrey3,Sintsov Sergey3

Affiliation:

1. Institute of Applied Physics RASBaikov Institute of Metallurgy and Material Science RAS

2. Baikov Institute of Metallurgy and Material Science RAS

3. Institute of Applied Physics RAS

Abstract

Nanoscale tungsten carbide WC powders are of practical interest for the creation of nanostructured hard alloys with enhanced physical and mechanical characteristics, wear-resistant nanostructured coatings, electrocatalysts in fuel cells, metal melt modifiers [1]. An efficient method for producing tungsten carbide nanopowder is a plasma-chemical synthesis of a multi-component powder nanocomposite system W-C in combination with its subsequent heat treatment [2]. Experimental studies have shown the possibility of producing tungsten carbide WC nanopowder by this method. But the transformation of the nanocomposite in the target product is accompanied by an increase in the size of nanoparticles. We assume that this growth is associated with prolonged heating (several hours) in an electric furnace at a temperature of about 1000 ° C. This time is necessary for the complete transformation of the nanocomposite into the target product. The aim of the work was an experimental study of the formation of tungsten carbide nanopowder WC when processing a multi-component powder nanocomposite system W-C in an electromagnetic field with a frequency of 24 GHz. A multipurpose gyrotron system with a nominal power of 7 kW with at a frequency of 24 GHz was used for the experiments. The microwave application system described in [3]. The powders were treated in an argon flow. The experiments were carried varying exposure time and microwave power. The samples of nanopowders obtained in the experiments were analyzed using the following methods: XRD, TEM, SEM, BET, LDA, CEA. It was established that microwave radiation with a frequency of 24 GHz allows heating samples of powders to a temperature of 1100-1200 C almost immediately (after 1-2 s) after switching on. The tungsten carbide WC is formed in a few minutes under the exposure to microwave radiation of the original W-C nanocomposite system. There is only a slight increase in the average particle size from 20 to 30 nm. The investigations showed that the synthesis of tungsten carbide WC under the microwave heating as compared to conventional heating in an electric furnace may be carried out for significantly less time while maintaining the particles in the nanometer range.The work was carried out within the framework of the Program #14 "Physical chemistry of adsorption phenomena and actinide nanoparticles" of the Presidium of the Russian Academy of Sciences.References Z. Zak Fang, Xu Wang, et al. Int. Journal of Refractory Metals & Hard Materials, 2009, 27, 288–299.Samokhin A., Alekseev N., et al. Plasma Chem. Plasma Proc., 2013, 33, 605–616.Samokhin A., Alekseev N., et al. J. Nanotechnol. Eng. Med., 2015, 6, 011008. 

Publisher

Universitat Politècnica de València

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3