A COMPARATIVE STUDY OF MICROWAVE AND BARRIER DISCHARGE PLASMA FOR THE REGENERATION OF SPENT ZEOLITE CATALYSTS

Author:

Bond Gary1,Halman A.2,Eccles H.2,Mao R.2,Pollington S.3,Hinde P.3,Demidyuk V.3,Gkelios A.3

Affiliation:

1. University of Central Lancashire

2. Centre for Materials Science, University of Central Lancashire, Preston, PR1 2H,.UK.

3. Johnson Matthey Technology Centre, PO Box1, Belasis Avenue, Billingham, Cleveland, TS23 1LB, UK.

Abstract

Due to their acid characteristics and pore structure, which can induce high product selectivity; zeolite catalysts are used extensively in industry to catalyse reactions involving hydrocarbons.  However, these catalysts can suffer from deactivation due to cracking reactions that result in the deposition of carbon leading to poisoning of the acid sites and blocking of the pores [1].  Depending upon the reaction and the particular catalyst involved this deactivation may take place over several months or even years but in some cases occurs in minutes.  Therefore, zeolite catalysts are frequently reactivated / regenerated.  This generally involves a thermal treatment involving air which results in oxidation of the carbon [2].  However, the oxidation of carbon is highly exothermic, and if not carefully controlled, results in the generation of exceedingly high localized temperatures which can destroy the zeolite structure and result in subsequent loss of catalyst activity.  More conservative thermal treatments can result in incomplete regeneration and again a catalyst displaying inferior activity. This paper explores the use of non-thermal plasma which had been either generated using microwaves or via a barrier discharge to regenerate spent zeolite catalysts.  The catalyst, H-mordenite, was tested for the disproportionation of toluene (Figure 1) using conventional heating.  The spent catalyst was then regenerated using a plasma or conventional thermal treatment before having its activity re-evaluated for the toluene disproportionation reaction as previous.           Fig. 1. Reaction Scheme for Toluene Disproportionation.   Interestingly, not only is plasma regeneration highly effective but also catalysts can be regenerated in greatly reduced times.  There is an additional advantage in that plasma regeneration can impart physical properties that result in a zeolite that is resistant to further deactivation.  However, the results are highly dependent upon the experimental conditions involved for plasma regeneration.   References Wu J, Leu L., Appl. Catal., 1983; 7:283-294. M. Guisnet and P. Magnoux, Deactivation of Zeolites by Coking. Prevention of Deactivation and Regeneration. In: Zeolite Microporous Solids: Synthesis, Structure, and Reactivity. E.G. Derouane, F Lemos, C. Naccache, F. Ramôa Ribeiro, Eds. Pages 437-456. Springer 1992.

Publisher

Universitat Politècnica de València

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3