Abstract
<p>Two <em>in vitro</em> experiments were performed to analyse the fermentative potential of ileal content, caecal content, soft faeces and hard faeces from adult rabbits. Experiment 1 evaluated 3 doses (0.5, 1.0 and 2.0 g fresh digesta/g substrate dry matter [DM]) of ileal and caecal digesta as inoculum in 28 h-incubations. Two ileal and 2 caecal inocula were obtained, each by pooling the ileal or caecal digesta of 2 adult rabbits. Pectin from sugar beet pulp (SBP) and the insoluble residue obtained after a 2-step <em>in vitro</em> pre-digestion of SBP and wheat straw were used as substrates. The 0.5 dose produced the lowest (<em>P</em><0.05) amount of gas at 28 h, with no differences (<em>P</em>>0.05) between the 1.0 and 2.0 doses (44.9, 51.6 and 53.8 mL/g substrate DM, respectively; values averaged across inocula and substrates). Experiment 2 evaluated two doses of ileal inoculum (1 and 1.5 g fresh digesta/g substrate DM) and compared ileal digesta, caecal digesta, soft faeces and hard faeces as inoculum for determining <em>in vitro</em> gas production (144-h incubations) of the 3 substrates used in Experiment 1 and wheat starch. Three inocula of each type were obtained, each by pooling either digesta or faeces from 3 rabbits. There were no differences (<em>P</em>>0.05) between the 2 ileal doses tested in gas production parameters, and therefore the 1.0 dose was selected for further ileal fermentations. Starch and pectin showed similar (<em>P</em>>0.05) values of gas production rate and maximal gas production rate when they were fermented with caecal digesta (0.038 vs. 0.043%/h, and 13.7 vs. 15.2 mL/h, respectively), soft (0.022 vs. 0.031%/h, and 9.97 vs. 9.33 mL/h) and hard faeces (0.031 vs. 0.038%/h, and 13.6 vs. 10.8 mL/h), and values were higher than those for SBP and wheat straw; in contrast, values for starch and pectin differed with the ileal inoculum (0.046 vs. 0.024%/h, and 18.4 vs. 6.60 mL/h). Both ileal and caecal gas production parameters were well correlated with those for hard and soft faeces inocula, respectively (r≥0.77; <em>P</em>≤0.040). The ileal inoculum showed a relevant fermentative potential, but lower than that of caecal digesta and soft and hard faeces for all substrates except wheat starch.</p>
Publisher
Universitat Politecnica de Valencia
Subject
Animal Science and Zoology
Reference40 articles.
1. Abad R., Ibañez M.A., Carabaño R., García J. 2013. Quantification of soluble fibre in feedstuffs for rabbits and evaluation of the interference between the determinations of soluble fibre and intestinal mucin. Anim. Feed Sci. Tech., 182: 61-70. https://doi.org/10.1016/j.anifeedsci.2013.04.001
2. Abad-Guamán R., Carabaño R., Gómez-Conde M.S., García J. 2015. Effect of type of fiber, site of fermentation, and method of analysis on digestibility of soluble and insoluble fiber in rabbits. J. Anim. Sci., 93: 2860-2871. https://doi.org/10.2527/jas.2014-8767
3. Association of Official Analytical Chemists International. 2000. Official Methods of Analysis 17th ed. AOAC International, Washington, DC.
4. Bindelle J., Buldgen A., Lambotte D., Wavreille J., Leterme P. 2007. Effect of pig faecal donor and of pig diet composition on in vitro fermentation of sugar beet pulp. Anim. Feed Sci. Technol., 132: 212-226. https://doi.org/10.1016/j.anifeedsci.2006.03.010
5. Boletín Oficial del Estado (BOE). 2013. Royal Decree 53/2013 of February 1st on the protection of animals used for experimentation or other scientific purposes. BOE nº 34, 11370-11421. https://www.boe.es/boe/dias/2013/02/08/pdfs/BOE-A-2013-1337.pdf Accessed January 2017. In Spanish.