VIRTUAL TERRESTRIAL LASER SCANNER SIMULATOR IN DIGITAL TWIN ENVIRONMENT

Author:

Popovas Darius1,Chizhova Maria2,Gorkovchuk Denys3,Gorkovchuk Julia3,Hess Mona4,Luhmann Thomas1

Affiliation:

1. Jade University of Applied Sciences, Institute for Applied Photogrammetry and Geoinformatics

2. University of Bamberg, Digital Technologies in Heritage Conservation, Institute of Archaeology, Heritage Sciences and Art History

3. Kyiv National University for Construction and Architecture, Department of Geoinformatics and Photogrammetry

4. University of Bamberg, Digital Technologies in Heritage Conservation, Institute of Archaeology, Heritage Sciences and Art History

Abstract

We are presenting a Terrestrial Laser Scanner simulator - a software device which could be a valuable educational tool for geomatics and engineering students. The main goal of the VirScan3D project is to cover engineering digitisation and will be solved through the development of a virtual system that allows users to create realistic data in the absence of a real measuring device in a modelled real life environment (digital twin). The prototype implementation of the virtual laser scanner is realised within a game engine, which allows for fast and easy 3D visualisation and navigation. Real life objects can be digitised, modelled and integrated into the simulator, thus creating a digital copy of a real world environment. Within this environment, the user can freely navigate and define suitable scanning positions/stations. At each scanning station a simulated scan is performed which is adapted to the technical specifications of a real scanner. The mathematical solution is based on 3D line intersection with the virtual 3D surface including noise and colour as well as an intensity simulation. As a result, 3D point clouds for each station are generated, which will be further processed for registration and modelling using standard software packages.

Publisher

Editorial Universitat Politécnica de Valéncia

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Alternative Urban and Architectural Virtual Realities Through Multidomain Digital Twins;Digital Innovations in Architecture, Engineering and Construction;2024

2. DEVELOPMENT OF TERRESTRIAL LASER SCANNING SIMULATOR;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2022-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3