Abstract
O sucesso de uma estratégia de mitigação dos efeitos da seca passa pela implementação de um sistema de monitorização e previsão eficaz, capaz de identificar os eventos de seca e de seguir a sua evolução espácio-temporal. Neste artigo demonstrase a eficiência de redes neuronais artificiais na previsão, para Portugal, do índice de precipitação padronizada, SPI, relativo à primavera. A validação dos modelos recorreu ao hindcasting, designando-se, por tal, a técnica através da qual um dado modelo é testado mediante a sua aplicação a períodos temporais históricos, com comparação dos resultados obtidos com as respectivas observações. O índice SPI foi calculado à escala temporal de 6 meses tendo o hindcast utilizado como indicadores climáticos a oscilação do Atlântico Norte e temperaturas da superfície do mar. O estudo evidenciou a mais valia da inclusão dos anteriores predictores externos no modelo de previsão. Elaboraram-se, ainda, mapas de probabilidade de ocorrência de seca os quais constituem importantes ferramentas no planeamento integrado e na gestão de recursos hídricos.
Publisher
Universitat Politecnica de Valencia
Reference70 articles.
1. Agnew, C.T. (2000). Using the SPI to identify drought. Drought Network News, 12, 6-12.
2. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000a). Artificial neural networks in hydrology. I. Preliminary concepts. Journal of Hydrologic Engineering, 5(2), 115-123. doi:10.1061/(ASCE)1084-0699(2000)5:2(115)
3. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000b). Artificial neural networks in hydrology. II. Hydrologic applications. Journal of Hydrologic Engineering, 5(2), 124-137. doi:10.1061/(ASCE)1084-0699(2000)5:2(124)
4. Bordi, I., Fraedrich, K., Petitta, M., Sutera, A. (2005). Methods for predicting drought occurrences. In Proceedings of the 6th International Conference of the European Water Resources Association, Menton, France.
5. Bowden, G.J., Dandy, G.C., Maier, H.R. (2005). Input determination for neural network models in water resources applications. Part 1-background and methodology. Journal of Hydrology, 301(1-4), 75-92. doi:10.1016/j.jhydrol.2004.06.021
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献