A digital botanical garden: using interactive 3D models for visitor experience enhancement and collection management

Author:

Redweik PaulaORCID,Reis Susana,Duarte Maria CristinaORCID

Abstract

Highlights: A virtual 3D model of a botanical garden was built based on a GIS with plants botanical information and buildings, statues and other assets historical information. The height and crown diameter of individual trees were determined from watershed operations on aerial LiDAR data. Statues were modelled photogrammetrically. Buildings were modelled procedurally using CGA rules. Users found realism and information access to be the most positive points. The way of data organisation and the elaborated modelling rules make the product easily extendable for new data and objects. Abstract: Botanical gardens are important spots in urban spaces, both for researchers and for many different kinds of public. Conveying scientific information by means of an attractive digital product, on a pre- or post-visit experience, is a way of captivating the public, especially the younger generation, to the relevance of those gardens as repositories of knowledge and for conservation of plant species diversity. This approach also facilitates communication with the general public and access to historical data. On the other hand, bringing the garden to the desktop of researchers and managers can be an advantage, not only for an overview of the status quo but also in spatial planning matters. This paper describes the production of a 3D dynamic model of the Tropical Botanical Garden in Lisbon on top of a Geographic Information System (GIS). Its development included creating a spatial database to organise data originating from a variety of sources, the three-dimensional (3D) modelling of plants, buildings and statues, the creation of web pages with historic and contextual information, as well as the publication of a number of interactive 3D scenes. Several software packages were used, and the final outputs were published in ArcGIS Online to be explored by the public and researchers (link provided at the end of the text). The data are organised in a database, and most 3D modelling tasks are procedural through Computer Generated Architecture (CGA) rules. Thus, updating information or 3D models can be done without having to repeat all steps, an important feature for a dynamic botanical garden. Challenges and solutions are also addressed, providing a constructive contribution to the further implementation of similar experiences in other botanical gardens. According to a user survey carried out, the realism of the representation and the possibility of easily retrieving information from the objects are the most positive aspects of the project.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Universitat Politecnica de Valencia

Subject

Computer Science Applications,Archeology,Archeology,Conservation

Reference57 articles.

1. .3D City DB (2021). Semantic 3D City Model of Berlin. Retrieved September 8, 2021, from https://www.3dcitydb.org/3dcitydb/visualizationberlin/

2. Almeida, A., Gonçalves, L., Falcão, A., & Ildefonso, S. (2016). 3D-GIS Heritage City Model: Case study of the Historical City of Leiria. In The 19th AGILE International Conference on Geographic Information Science, Geospatial Data in a Changing World, (pp. 14–17). Helsinki, Finland.

3. Antunes, S. (2013). Virtual Campus for the University of Jaume I, Castelló, Spain: 3D Modelling of the Campus Buildings Using CityEngine (Masters thesis, Universidade Nova de Lisboa, Portugal). Retrieved from http://hdl.handle.net/10362/9209

4. Arnold, J. (2017). Preserving the Vernacular Postindustrial Landscape: Big Data Geospatial Approaches to Heritage Management and Interpretation (Master thesis, Michigan Technological University, United States of America). Retrieved from https://doi.org/10.37099/mtu.dc.etdr/485

5. Badwi, I. M., Ellaithy, H. M., & Youssef, H. E. (2022). 3D-GIS Parametric Modelling for Virtual Urban Simulation Using CityEngine. Annals of GIS, 28(3), 325–341. https://doi.org/10.1080/19475683.2022.2037019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3