The function ω ƒ on simple n-ods

Author:

Vidal-Escobar Ivon,Garcia-Ferreira Salvador

Abstract

<p>Given a discrete dynamical system (X, ƒ), we consider the function ω<sub>ƒ</sub>-limit set from X to 2<sup>x </sup>as</p><p>ω<sub>ƒ</sub>(x) = {y ∈ X : there exists a sequence of positive integers <br /> n<sub>1</sub> &lt; n<sub>2</sub> &lt; … such that lim<sub>k</sub><sub>→</sub><sub>∞</sub> ƒ<sup>nk</sup> (x) = y},</p><p>for each x ∈ X. In the article [1], A. M. Bruckner and J. Ceder established several conditions which are equivalent to the continuity of the function ω<sub>ƒ</sub> where ƒ: [0,1] → [0,1] is continuous surjection. It is natural to ask whether or not some results of [1] can be extended to finite graphs. In this direction, we study the function ω<sub>ƒ</sub> when the phase space is a n-od simple T. We prove that if ω<sub>ƒ</sub> is a continuous map, then Fix(ƒ<sup>2</sup>) and Fix(ƒ<sup>3</sup>) are connected sets. We will provide examples to show that the inverse implication fails when the phase space is a simple triod. However, we will prove that:</p><p>Theorem A 2. If ƒ: T → T is a continuous function where T is a simple triod then ω<sub>ƒ</sub> is a continuous set valued function iff the family {ƒ<sup>0</sup>, ƒ<sup>1</sup>, ƒ<sup>2</sup>,} is equicontinuous.</p><p>As a consequence of our results concerning the ω<sub>ƒ</sub> function on the simple triod, we obtain the following characterization of the unit interval.</p><p>Theorem A 1. Let G be a finite graph. Then G is an arc iff for each continuous function ƒ: G → G the following conditions are equivalent:<br /> (1) The function ω<sub>ƒ</sub> is continuous.<br /> (2) The set of all fixed points of ƒ<sup>2 </sup>is nonempty and connected.</p>

Publisher

Universitat Politecnica de Valencia

Subject

Geometry and Topology

Reference9 articles.

1. A. M. Bruckner and J. Ceder, Chaos in terms of the map x → ω(x,f)$, Pacific J. Math. 156 (1992), 63-96. https://doi.org/10.2140/pjm.1992.156.63

2. R. Gu, Equicontinuity of maps on figure-eight space, Southeast Asian Bull. Math. 25 (2001), 413-419. https://doi.org/10.1007/s100120100004

3. W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press, Princeton (1941). https://doi.org/10.1515/9781400875665

4. A. Illanes and S. B. Nadler, Jr., Hyperspaces: Fundamental and Recent Advances, A Series of Monographs and Textbooks Pure and Applied Mathematics 216, Marcel Decker Inc. New York (1998).

5. S. Kolyada and L. Snoha, Some aspects of topological transitivity a survey, Grazer Math. Ber. 334 (1997), 3-35.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the functions ωf and Ω f ;Mathematica Slovaca;2024-06-01

2. The ω-limit function on dendrites;Topology and its Applications;2020-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3