Design process innovation through flexible and circular technological solutions

Author:

Violano AntonellaORCID,Cannaviello MonicaORCID

Abstract

The goal of optimizing material resources and the polyvalent use of space lead to the development of new technologies within a renewed architectural spatiality, which from the point of view of effectiveness of choices allow for low-carbon buildings. The climate emergency, in fact, asks us today to reinterpret Vitruvius’ concept of Firmitas according to the criteria of durability reliability and resilience associated with widespread usability functionality and circularity (Utilitas) traceable throughout the life cycle a building. The paper illustrates the results of a scientific research project that led to the construction of a prototype of a “minimal” residence, designed and built with the “total low” approach, characterized by regenerative design, economy, lightness, ease of assembly, recyclability, as well as excellent overall performance and high levels of comfort. The idea of a building, easily assembled and disassembled, is a strength of the “Petite-Cabane” design concept: a 3x3 m single-user minimum residential unit made with the Light Gauge Steel Building System (LGS) produced with controlled automatically roll forming machine, for which high technological and energy performance envelope packages. The design of a small house becomes the “mise en forme” of a space in which “essential” equipment, energy performance, architectural qualities, economic and environmental costs are linked to the ease and immediacy of construction but also to the flexibility and circularity of technological choices.

Publisher

Universitat Politecnica de Valencia

Subject

Building and Construction,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Key attributes of designers’ competencies for design-for-deconstruction implementation;Proceedings of the Institution of Civil Engineers - Management, Procurement and Law;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3