Remote Sensing of Arctic Vegetation: Relations between the NDVI, Spatial Resolution and Vegetation Cover on Boothia Peninsula, Nunavut

Author:

Laidler Gita J.,Treitz Paul M.,Atkinson David M.

Abstract

Arctic tundra environments are thought to be particularly sensitive to changes in climate, whereby alterations in ecosystem functioning are likely to be expressed through shifts in vegetation phenology, species composition, and net ecosystem productivity (NEP). Remote sensing has shown potential as a tool to quantify and monitor biophysical variables over space and through time. This study explores the relationship between the normalized difference vegetation index (NDVI) and percent-vegetation cover in a tundra environment, where variations in soil moisture, exposed soil, and gravel till have significant influence on spectral response, and hence, on the characterization of vegetation communities. IKONOS multispectral data (4 m spatial resolution) and Landsat 7 ETM+ data (30 m spatial resolution) were collected for a study area in the Lord Lindsay River watershed on Boothia Peninsula, Nunavut. In conjunction with image acquisition, percent cover data were collected for twelve 100 m × 100 m study plots to determine vegetation community composition. Strong correlations were found for NDVI values calculated with surface and satellite sensors, across the sample plots. In addition, results suggest that percent cover is highly correlated with the NDVI, thereby indicating strong potential for modeling percent cover variations over the region. These percent cover variations are closely related to moisture regime, particularly in areas of high moisture (e.g., water-tracks). These results are important given that improved mapping of Arctic vegetation and associated biophysical variables is needed to monitor environmental change.

Publisher

The Arctic Institute of North America

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3