Daily Field Observations of Retrogressive Thaw Slump Dynamics in the Canadian High Arctic

Author:

Ward Jones Melissa K.ORCID,Pollard Wayne H.ORCID

Abstract

With observed increases in retrogressive thaw slump (RTS) number, rates, and size in recent decades, there is a need to understand these highly dynamic landforms as they impact surrounding ecosystems and infrastructure. There is a general lack of detailed (e.g., daily) field observations of change in RTSs; we help fill this gap by monitoring three RTSs for much of the 2017 thaw period by setting up and tracking survey transects on a near daily basis. We correlated mean daily and cumulative retreat to mean daily air temperature (MDAT), total daily precipitation (TDP), and cumulative thawing degree days (TDD) using various polynomial regressions and Pearson correlation techniques. Our results show that July retreat was highly variable, and periods of increased RTS retreat did not always align with periods of increased air temperature. Also, multiple periods of increased retreat largely driven by sediment distribution in the RTS floor could occur within a single period of increased air temperature. Retreat rates decreased suddenly in early August, indicating a threshold of either air temperature, solar radiation or a combination of both must be reached for increased retreat rates. A statistically significant correlation was found between daily mean and mean cumulative retreat with MDAT (p > 0.001) and TDD (p > 0.001 and > 0.0001) but not with total daily precipitation. Correlating mean cumulative retreat and TDD using polynomial regression generated R2 values greater than 0.99 for all three sites. Both cumulative retreat and TDD account for past and current conditions, as well as lag responses, within the monitoring period. The high R2 values for the correlation of mean cumulative retreat and TDD suggest the potential for accurately modelling RTS retreat with minimal field data (air temperature and headwall position), however modelling is currently restricted to individual RTSs and only within short time scales. Monitoring RTSs on a daily scale allows RTS behaviour and trends to be identified that may be obscured at annual time scales and highlights the importance of all system inputs when considering RTS retreat dynamics. 

Publisher

The Arctic Institute of North America

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3