Littlewood–Richardson coefficients for Grothendieck polynomials from integrability

Author:

Wheeler Michael1,Zinn-Justin Paul2

Affiliation:

1. School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010, Australia

2. Laboratoire de Physique Théorique et Hautes Énergies, CNRS UMR 7589 and Université Pierre et Marie Curie (Paris 6), 4 place Jussieu, 75252Pariscedex 05, France; and School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010, Australia

Abstract

AbstractWe study the Littlewood–Richardson coefficients of double Grothendieck polynomials indexed by Grassmannian permutations. Geometrically, these are the structure constants of the equivariant K-theory ring of Grassmannians. Representing the double Grothendieck polynomials as partition functions of an integrable vertex model, we use its Yang–Baxter equation to derive a series of product rules for the former polynomials and their duals. The Littlewood–Richardson coefficients that arise can all be expressed in terms of puzzles without gashes, which generalize previous puzzles obtained by Knutson–Tao and Vakil.

Funder

Australian Research Council

H2020 European Research Council

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference46 articles.

1. Group characters and algebra;Philos. Trans. Roy. Soc. London, Ser. A,1934

2. A new exactly solvable case of an O⁢(n)\mathrm{O}(n)-model on a hexagonal lattice;J. Phys. A,1991

3. Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux;C. R. Acad. Sci. Paris Sér. I Math.,1982

4. A geometric Littlewood–Richardson rule;Ann. of Math. (2),2006

5. Integrability of the square-triangle random tiling model;Phys. Rev. E (3),1997

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Colored vertex models and Iwahori Whittaker functions;Selecta Mathematica;2024-09

2. Refined canonical stable Grothendieck polynomials and their duals, Part 1;Advances in Mathematics;2024-06

3. Iwahori‐metaplectic duality;Journal of the London Mathematical Society;2024-05-23

4. Free fermions and canonical Grothendieck polynomials;Algebraic Combinatorics;2024-02-22

5. Free fermions and Schur expansions of multi-Schur functions;Journal of Combinatorial Theory, Series A;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3