On the geometric André–Oort conjecture for variations of Hodge structures

Author:

Chen Jiaming1ORCID

Affiliation:

1. Institut de mathématiques de Jussieu – Paris Rive Gauche , Université de Paris , Bâtiment Sophie Germain, 8 Place Aurélie Nemours, Case 7045, 75205 Paris Cedex 13 , France

Abstract

Abstract Let 𝕍 {{\mathbb{V}}} be a polarized variation of integral Hodge structure on a smooth complex quasi-projective variety S. In this paper, we show that the union of the non-factor special subvarieties for ( S , 𝕍 ) {(S,{\mathbb{V}})} , which are of Shimura type with dominant period maps, is a finite union of special subvarieties of S. This generalizes previous results of Clozel and Ullmo (2005) and Ullmo (2007) on the distribution of the non-factor (in particular, strongly) special subvarieties in a Shimura variety to the non-classical setting and also answers positively the geometric part of a conjecture of Klingler on the André–Oort conjecture for variations of Hodge structures.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference30 articles.

1. Y. André, Mumford–Tate groups of mixed Hodge structures and the theorem of the fixed part, Compos. Math. 82 (1992), no. 1, 1–24.

2. F. Andreatta, E. Z. Goren, B. Howard and K. Madapusi Pera, Faltings heights of abelian varieties with complex multiplication, Ann. of Math. (2) 187 (2018), no. 2, 391–531.

3. B. Bakker, B. Klingler and J. Tsimerman, Tame topology of arithmetic quotients and algebraicity of Hodge loci, J. Amer. Math. Soc. 33 (2020), no. 4, 917–939.

4. J. Carlson, S. Müller-Stach and C. Peters, Period mappings and period domains, 2nd ed., Cambridge Stud. Adv. Math. 168, Cambridge University, Cambridge 2017.

5. E. Cattani, P. Deligne and A. Kaplan, On the locus of Hodge classes, J. Amer. Math. Soc. 8 (1995), no. 2, 483–506.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3