Crystal limits of compact semisimple quantum groups as higher-rank graph algebras

Author:

Matassa Marco1ORCID,Yuncken Robert2ORCID

Affiliation:

1. OsloMet – Oslo Metropolitan University , Oslo , Norway

2. Institut Elie Cartan de Lorraine , Université de Lorraine , 3 rue Augustin Fresnel, 57000 Metz , France

Abstract

Abstract Let O q [ K ] \mathcal{O}_{q}[K] be the quantized coordinate ring over the field C ( q ) \mathbb{C}(q) of rational functions corresponding to a compact semisimple Lie group 𝐾, equipped with its ∗-structure. Let A 0 C ( q ) {\mathbf{A}_{0}}\subset\mathbb{C}(q) denote the subring of regular functions at q = 0 q=0 . We introduce an A 0 \mathbf{A}_{0} -subalgebra O q A 0 [ K ] O q [ K ] \mathcal{O}_{q}^{{\mathbf{A}_{0}}}[K]\subset\mathcal{O}_{q}[K] which is stable with respect to the ∗-structure and which has the following properties with respect to the crystal limit q 0 q\to 0 . The specialization of O q [ K ] \mathcal{O}_{q}[K] at each q ( 0 , ) { 1 } q\in(0,\infty)\setminus\{1\} admits a faithful ∗-representation π q \pi_{q} on a fixed Hilbert space, a result due to Soibelman. We show that, for every element a O q A 0 [ K ] a\in\mathcal{O}_{q}^{{\mathbf{A}_{0}}}[K] , the family of operators π q ( a ) \pi_{q}(a) admits a norm limit as q 0 q\to 0 . These limits define a ∗-representation π 0 \pi_{0} of O q A 0 [ K ] \mathcal{O}_{q}^{{\mathbf{A}_{0}}}[K] . We show that the resulting ∗-algebra O [ K 0 ] = π 0 ( O q A 0 [ K ] ) \mathcal{O}[K_{0}]=\pi_{0}(\mathcal{O}_{q}^{{\mathbf{A}_{0}}}[K]) is a Kumjian–Pask algebra, in the sense of Aranda Pino, Clark, an Huef and Raeburn. We give an explicit description of the underlying higher-rank graph in terms of crystal basis theory. As a consequence, we obtain a continuous field of C * C^{*} -algebras ( C ( K q ) ) q [ 0 , ] (C(K_{q}))_{q\in[0,\infty]} , where the fibres at q = 0 q=0 and ∞ are explicitly defined higher-rank graph algebras.

Funder

European Cooperation in Science and Technology

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3