Weighted Sobolev spaces on metric measure spaces

Author:

Ambrosio Luigi,Pinamonti Andrea,Speight Gareth

Abstract

Abstract We investigate weighted Sobolev spaces on metric measure spaces {(X,\mathrm{d},\mathfrak{m})} . Denoting by ρ the weight function, we compare the space {W^{1,p}(X,\mathrm{d},\rho\mathfrak{m})} (which always coincides with the closure {H^{1,p}(X,\mathrm{d},\rho\mathfrak{m})} of Lipschitz functions) with the weighted Sobolev spaces {W^{1,p}_{\rho}(X,\mathrm{d},\mathfrak{m})} and {H^{1,p}_{\rho}(X,\mathrm{d},\mathfrak{m})} defined as in the Euclidean theory of weighted Sobolev spaces. Under mild assumptions on the metric measure structure and on the weight we show that {W^{1,p}(X,\mathrm{d},\rho\mathfrak{m})=H^{1,p}_{\rho}(X,\mathrm{d},\mathfrak{% m})} . We also adapt the results in [23] and in the recent paper [27] to the metric measure setting, considering appropriate conditions on ρ that ensure the equality {W^{1,p}_{\rho}(X,\mathrm{d},\mathfrak{m})=H^{1,p}_{\rho}(X,\mathrm{d},% \mathfrak{m})} .

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference54 articles.

1. Sobolev met Poincaré;Mem. Amer. Math. Soc.,2000

2. Density of smooth functions in weighted Sobolev spaces;Dokl. Math.,2013

3. Differentiable structures on metric measure spaces: A primer;Ann. Sc. Norm. Super. Pisa Cl. Sci. (5),2016

4. Sobolev met Poincaré;Mem. Amer. Math. Soc.,2000

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Poincaré inequalities and A weights on bow-ties;Journal of Mathematical Analysis and Applications;2024-11

2. Absolutely continuous curves in Finsler-like spaces;Differential Geometry and its Applications;2024-10

3. Density of continuous functions in Sobolev spaces with applications to capacity;Transactions of the American Mathematical Society, Series B;2024-07-12

4. Relaxation and optimal finiteness domain for degenerate quadratic functionals. One-dimensional case;ESAIM: Control, Optimisation and Calculus of Variations;2024

5. Sobolev and Besov Classes on Infinite-Dimensional Spaces;Proceedings of the Steklov Institute of Mathematics;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3