Author:
Ambrosio Luigi,Pinamonti Andrea,Speight Gareth
Abstract
Abstract
We investigate weighted Sobolev spaces on metric measure spaces
{(X,\mathrm{d},\mathfrak{m})}
. Denoting by ρ the weight function,
we compare the space
{W^{1,p}(X,\mathrm{d},\rho\mathfrak{m})}
(which always coincides with the closure
{H^{1,p}(X,\mathrm{d},\rho\mathfrak{m})}
of Lipschitz functions)
with the weighted Sobolev spaces
{W^{1,p}_{\rho}(X,\mathrm{d},\mathfrak{m})}
and
{H^{1,p}_{\rho}(X,\mathrm{d},\mathfrak{m})}
defined as in the Euclidean theory of weighted Sobolev spaces.
Under mild assumptions on the metric measure structure and on the weight we show that
{W^{1,p}(X,\mathrm{d},\rho\mathfrak{m})=H^{1,p}_{\rho}(X,\mathrm{d},\mathfrak{%
m})}
. We also adapt the results in [23] and in the recent paper [27]
to the metric measure setting, considering appropriate conditions on ρ that ensure the equality
{W^{1,p}_{\rho}(X,\mathrm{d},\mathfrak{m})=H^{1,p}_{\rho}(X,\mathrm{d},%
\mathfrak{m})}
.
Subject
Applied Mathematics,General Mathematics
Reference54 articles.
1. Sobolev met Poincaré;Mem. Amer. Math. Soc.,2000
2. Density of smooth functions in weighted Sobolev spaces;Dokl. Math.,2013
3. Differentiable structures on metric measure spaces: A primer;Ann. Sc. Norm. Super. Pisa Cl. Sci. (5),2016
4. Sobolev met Poincaré;Mem. Amer. Math. Soc.,2000
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献