Systems of cubic forms in many variables

Author:

Rydin Myerson Simon L.1

Affiliation:

1. Department of Mathematics, University College London, Gower Street, LondonWC1E 6BT, United Kingdom

Abstract

AbstractWe consider a system of R cubic forms in n variables, with integer coefficients, which define a smooth complete intersection in projective space. Provided {n\geq 25R}, we prove an asymptotic formula for the number of integer points in an expanding box at which these forms simultaneously vanish. In particular, we obtain the Hasse principle for systems of cubic forms in {25R} variables, previous work having required that {n\gg R^{2}}. One conjectures that {n\geq 6R+1} should be sufficient. We reduce the problem to an upper bound for the number of solutions to a certain auxiliary inequality. To prove this bound we adapt a method of Davenport.

Funder

Engineering and Physical Sciences Research Council

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference38 articles.

1. Forms in many variables and differing degrees;J. Eur. Math. Soc. (JEMS),2017

2. Forms in many variables;Proc. Roy. Soc. Ser. A,1961/1962

3. Asymptotic formulae for pairs of diagonal equations;Math. Proc. Cambridge Philos. Soc.,2004

4. Asymptotic formulae for pairs of diagonal equations;Math. Proc. Cambridge Philos. Soc.,2004

5. Quadratic forms and systems of forms in many variables;Preprint,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Hasse principle for complete intersections;Compositio Mathematica;2024-03-05

2. Systems of bihomogeneous forms of small bidegree;Acta Arithmetica;2024

3. Rational points on complete intersections over Fq(t)${\mathbb {F}}_q(t)$;Proceedings of the London Mathematical Society;2022-10-27

4. Cubic Forms via Weyl Differencing;Cubic Forms and the Circle Method;2021

5. Quantitative results on Diophantine equations in many variables;Acta Arithmetica;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3