The cohomology of semi-infinite Deligne–Lusztig varieties

Author:

Chan Charlotte1

Affiliation:

1. Department of Mathematics , Princeton University , Fine Hall, Washington Road , Princeton , NJ 08544-1000 , USA

Abstract

Abstract We prove a 1979 conjecture of Lusztig on the cohomology of semi-infinite Deligne–Lusztig varieties attached to division algebras over local fields. We also prove the two conjectures of Boyarchenko on these varieties. It is known that in this setting, the semi-infinite Deligne–Lusztig varieties are ind-schemes comprised of limits of certain finite-type schemes X h {X_{h}} . Boyarchenko’s two conjectures are on the maximality of X h {X_{h}} and on the behavior of the torus-eigenspaces of their cohomology. Both of these conjectures were known in full generality only for division algebras with Hasse invariant 1 / n {1/n} in the case h = 2 {h=2} (the “lowest level”) by the work of Boyarchenko–Weinstein on the cohomology of a special affinoid in the Lubin–Tate tower. We prove that the number of rational points of X h {X_{h}} attains its Weil–Deligne bound, so that the cohomology of X h {X_{h}} is pure in a very strong sense. We prove that the torus-eigenspaces of the cohomology group H c i ( X h ) {H_{c}^{i}(X_{h})} are irreducible representations and are supported in exactly one cohomological degree. Finally, we give a complete description of the homology groups of the semi-infinite Deligne–Lusztig varieties attached to any division algebra, thus giving a geometric realization of a large class of supercuspidal representations of these groups. Moreover, the correspondence θ H c i ( X h ) [ θ ] {\theta\mapsto H_{c}^{i}(X_{h})[\theta]} agrees with local Langlands and Jacquet–Langlands correspondences. The techniques developed in this paper should be useful in studying these constructions for p-adic groups in general.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference21 articles.

1. M. Boyarchenko, Characters of unipotent groups over finite fields, Selecta Math. (N.S.) 16 (2010), no. 4, 857–933.

2. M. Boyarchenko, Deligne–Lusztig constructions for unipotent and p-adic groups, preprint (2012), https://arxiv.org/abs/1207.5876.

3. M. Boyarchenko and J. Weinstein, Geometric realization of special cases of local Langlands and Jacquet–Langlands correspondences, preprint (2013), https://arxiv.org/abs/1303.5795.

4. M. Boyarchenko and J. Weinstein, Maximal varieties and the local Langlands correspondence for GL ⁡ ( n ) {\operatorname{GL}(n)} , J. Amer. Math. Soc. 29 (2016), no. 1, 177–236.

5. C. Chan, Deligne–Lusztig constructions for division algebras and the local Langlands correspondence, Adv. Math. 294 (2016), 332–383.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Steinberg’s cross-section of Newton strata;Mathematische Annalen;2024-05-02

2. Orthogonality relations for deep level Deligne–Lusztig schemes of Coxeter type;Forum of Mathematics, Sigma;2024

3. Arc-descent for the perfect loop functor and p-adic Deligne–Lusztig spaces;Journal für die reine und angewandte Mathematik (Crelles Journal);2022-10-21

4. The Drinfeld stratification for $${{\,\mathrm{GL}\,}}_n$$;Selecta Mathematica;2021-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3