Strong shift equivalence and algebraic K-theory

Author:

Boyle Mike,Schmieding Scott

Abstract

Abstract For a semiring \mathcal{R} , the relations of shift equivalence over \mathcal{R} ( \textup{SE-}\mathcal{R} ) and strong shift equivalence over \mathcal{R} ( \textup{SSE-}\mathcal{R} ) are natural equivalence relations on square matrices over \mathcal{R} , important for symbolic dynamics. When \mathcal{R} is a ring, we prove that the refinement of \textup{SE-}\mathcal{R} by \textup{SSE-}\mathcal{R} , in the \textup{SE-}\mathcal{R} class of a matrix A, is classified by the quotient NK_{1}(\mathcal{R})/E(A,\mathcal{R}) of the algebraic K-theory group NK_{1}(\mathcal{R}) . Here, E(A,\mathcal{R}) is a certain stabilizer group, which we prove must vanish if A is nilpotent or invertible. For this, we first show for any square matrix A over \mathcal{R} that the refinement of its \textup{SE-}\mathcal{R} class into \textup{SSE-}\mathcal{R} classes corresponds precisely to the refinement of the \mathrm{GL}(\mathcal{R}[t]) equivalence class of I-tA into \mathrm{El}(\mathcal{R}[t]) equivalence classes. We then show this refinement is in bijective correspondence with NK_{1}(\mathcal{R})/E(A,\mathcal{R}) . For a general ring \mathcal{R} and A invertible, the proof that E(A,\mathcal{R}) is trivial rests on a theorem of Neeman and Ranicki on the K-theory of noncommutative localizations. For \mathcal{R} commutative, we show \cup_{A}E(A,\mathcal{R})=NSK_{1}(\mathcal{R}) ; the proof rests on Nenashev’s presentation of K_{1} of an exact category.

Funder

Danmarks Grundforskningsfond

Natural Sciences and Engineering Research Council of Canada

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference86 articles.

1. The mathematical research of William Parry FRS;Ergodic Theory Dynam. Systems,2008

2. N⁢K1NK_{1} of finite groups;Proc. Amer. Math. Soc.,1987

3. Classification of subshifts of finite type;Ann. of Math. (2),1973

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Symbolic dynamics and the stable algebra of matrices;Groups and Graphs, Designs and Dynamics;2024-06-30

2. Symbolic Dynamics;Encyclopedia of Complexity and Systems Science Series;2023

3. Symbolic Dynamics;Encyclopedia of Complexity and Systems Science;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3