Quantitative stratification of stationary connections

Author:

Wang Yu1

Affiliation:

1. Department of Mathematics , Northwestern University , Evanston , Il 60208 , USA

Abstract

Abstract Let A be a connection of a principal bundle P over a Riemannian manifold M, such that its curvature F A L loc 2 ( M ) {F_{A}\in L_{\mathrm{loc}}^{2}(M)} satisfies the stationarity equation. It is a consequence of the stationarity that θ A ( x , r ) = e c r 2 r 4 - n B r ( x ) | F A | 2 𝑑 V g {\theta_{A}(x,r)=e^{cr^{2}}r^{4-n}\int_{B_{r}(x)}|F_{A}|^{2}\,dV_{g}} is monotonically increasing in r, for some c depending only on the local geometry of M. We are interested in the singular set defined by S ( A ) = { x : lim r 0 θ A ( x , r ) 0 } {S(A)=\{x:\lim_{r\to 0}\theta_{A}(x,r)\neq 0\}} , and its stratification S k ( A ) = { x : no tangent measure of  A  at  x  is  ( k + 1 ) -symmetric } {S^{k}(A)=\{x:\text{no tangent measure of $A$ at $x$ is $(k+1)$-symmetric}\}} . We then introduce the quantitative stratification S ϵ k ( A ) {S^{k}_{\epsilon}(A)} ; roughly speaking S ϵ k ( A ) {S^{k}_{\epsilon}(A)} is the set of points at which no ball B r ( x ) {B_{r}(x)} is ϵ-close to being ( k + 1 ) {(k+1)} -symmetric. In the main theorems, we show that S ϵ k {S^{k}_{\epsilon}} is k-rectifiable and satisfies the Minkowski volume estimate Vol ( B r ( S ϵ k ) B 1 ) C r n - k {\operatorname{Vol}(B_{r}(S^{k}_{\epsilon})\cap B_{1})\leq Cr^{n-k}} . Lastly, we apply the main theorems to the stationary Yang–Mills connections to obtain a rectifiability theorem that extends some previously known results in [G. Tian, Gauge theory and calibrated geometry. I, Ann. of Math. (2) 151 2000, 1, 193–268].

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference19 articles.

1. C. Breiner and T. Lamm, Quantitative stratification and higher regularity for biharmonic maps, Manuscripta Math. 148 (2015), no. 3–4, 379–398.

2. J. Cheeger, R. Haslhofer and A. Naber, Quantitative stratification and the regularity of mean curvature flow, Geom. Funct. Anal. 23 (2013), no. 3, 828–847.

3. J. Cheeger, R. Haslhofer and A. Naber, Quantitative stratification and the regularity of harmonic map flow, Calc. Var. Partial Differential Equations 53 (2015), no. 1–2, 365–381.

4. J. Cheeger and A. Naber, Lower bounds on Ricci curvature and quantitative behavior of singular sets, Invent. Math. 191 (2013), no. 2, 321–339.

5. J. Cheeger and A. Naber, Quantitative stratification and the regularity of harmonic maps and minimal currents, Comm. Pure Appl. Math. 66 (2013), no. 6, 965–990.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3