Deformations of rational curves in positive characteristic

Author:

Ito Kazuhiro1,Ito Tetsushi1,Liedtke Christian2

Affiliation:

1. Department of Mathematics, Faculty of Science, Kyoto University, Kyoto606-8502, Japan

2. Zentrum Mathematik – M11, TU München, Boltzmannstr. 3, 85748Garching bei München, Germany

Abstract

AbstractWe study deformations of rational curves and their singularities in positive characteristic. We use this to prove that if a smooth and proper surface in positive characteristic p is dominated by a family of rational curves such that one member has all δ-invariants (resp. Jacobian numbers) strictly less than {\frac{1}{2}(p-1)} (resp. p), then the surface has negative Kodaira dimension. We also prove similar, but weaker results hold for higher-dimensional varieties. Moreover, we show by example that our result is in some sense optimal. On our way, we obtain a sufficient criterion in terms of Jacobian numbers for the normalization of a curve over an imperfect field to be smooth.

Funder

Japan Society for the Promotion of Science

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference114 articles.

1. Bounds on leaves of one-dimensional foliations. Dedicated to the 50th anniversary of IMPA;Bull. Braz. Math. Soc. (N.S.),2003

2. Genus change in inseparable extensions of function fields;Proc. Amer. Math. Soc.,1952

3. Enriques’ classification of surfaces in char. p. II;Complex analysis and algebraic geometry,1977

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On regular but non-smooth integral curves;Journal of Algebra;2025-01

2. On behavior of conductors, Picard schemes, and Jacobian numbers of varieties over imperfect fields;Journal of Pure and Applied Algebra;2024-04

3. Rational curves on del Pezzo surfaces in positive characteristic;Transactions of the American Mathematical Society, Series B;2023-03-06

4. Curves on K3 surfaces;Duke Mathematical Journal;2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3