On the sharp lower bounds of modular invariants and fractional Dehn twist coefficients

Author:

Liu Xiao-Lei1,Tan Sheng-Li2

Affiliation:

1. School of Mathematical Sciences , Dalian University of Technology , Dalian , Liaoning Province , P. R. China

2. School of Mathematical Sciences , Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice , East China Normal University , Shanghai , P. R. China

Abstract

Abstract Modular invariants of families of curves are Arakelov invariants in arithmetic algebraic geometry. All the known uniform lower bounds of these invariants are not sharp. In this paper, we aim to give explicit lower bounds of modular invariants of families of curves, which is sharp for genus 2. According to the relation between fractional Dehn twists and modular invariants, we give the sharp lower bounds of fractional Dehn twist coefficients and classify pseudo-periodic maps with minimal coefficients for genus 2 and 3 firstly. We also obtain a rigidity property for families with minimal modular invariants, and other applications.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds of the Central Universities

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference38 articles.

1. S. J. Arakelov, Families of algebraic curves with fixed degeneracies, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1269–1293.

2. T. Ashikaga and M. Ishizaka, Classification of degenerations of curves of genus three via Matsumoto–Montesinos’ theorem, Tohoku Math. J. (2) 54 (2002), no. 2, 195–226.

3. W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3) 4, Springer, Berlin 1984.

4. A. Beauville, Le nombre minimum de fibres singulières d’une courbe stable sur ℙ1{\mathbb{P}}^{1}, Séminaire sur les pinceaux de courbes de genre au moins deux Astérisque 86, Société Mathématique de France, Paris (1981), 97–108.

5. Z. Cinkir, Zhang’s conjecture and the effective Bogomolov conjecture over function fields, Invent. Math. 183 (2011), no. 3, 517–562.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Faltings Heights of Hyperelliptic Curves over Function Fields;Acta Mathematica Sinica, English Series;2023-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3