The characterization of (𝑛 − 1)-spheres with 𝑛 + 4 vertices having maximal Buchstaber number

Author:

Choi Suyoung1,Jang Hyeontae1,Vallée Mathieu2ORCID

Affiliation:

1. Department of Mathematics , Ajou University , 206, World cup-ro, Yeongtong-gu , Suwon 16499 , Republic of Korea

2. LIPN , CNRS UMR 7030 , 129658 Université Sorbonne Paris Nord , 93430 , Villetaneuse , France

Abstract

Abstract We present a computationally efficient algorithm that is suitable for graphic processing unit implementation. This algorithm enables the identification of all weak pseudo-manifolds that meet specific facet conditions, drawn from a given input set. We employ this approach to enumerate toric colorable seeds. Consequently, we achieve a comprehensive characterization of ( n 1 ) (n-1) -dimensional PL spheres with n + 4 n+4 vertices that possess a maximal Buchstaber number. A primary focus of this research is the fundamental categorization of non-singular complete toric varieties of Picard number 4. This classification serves as a valuable tool for addressing questions related to toric manifolds of Picard number 4. Notably, we have determined which of these manifolds satisfy equality within an inequality regarding the number of minimal components in their rational curve space. This addresses a question posed by Chen, Fu, and Hwang in 2014 for this specific case.

Funder

National Research Foundation of Korea

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3