Connectedness of Kisin varieties associated to absolutely irreducible Galois representations

Author:

Chen Miaofen1,Nie Sian2

Affiliation:

1. School of Mathematical Sciences , Shanghai Key Laboratory of PMMP , East China Normal University , No. 500, Dong Chuan Road , Shanghai 200241 , P. R. China

2. Academy of Mathematics and Systems Science , Chinese Academy of Sciences , No. 55, Zhongguancun Road , Beijing 100190 ; and School of Mathematical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, No. 19(A), Yuquan Road, Beijing 100049 , P. R. China

Abstract

Abstract We consider the Kisin variety associated to an n-dimensional absolutely irreducible mod p Galois representation ρ ¯ {\bar{\rho}} of a p-adic field K together with a cocharacter μ. Kisin conjectured that the Kisin variety is connected in this case. We show that Kisin’s conjecture holds if K is totally ramified with n = 3 {n=3} or μ is of a very particular form. As an application, we get a connectedness result for the deformation ring associated to ρ ¯ {\bar{\rho}} of given Hodge–Tate weights. We also give counterexamples to show Kisin’s conjecture does not hold in general.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference56 articles.

1. C. Breuil, Integral p-adic Hodge theory, Algebraic geometry 2000, Adv. Stud. Pure Math. 36, Mathematical Society of Japan, Tokyo (2002), 51–80.

2. F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Publ. Math. Inst. Hautes Études Sci. 41, (1972), 5–251.

3. F. Calegari and D. Geraghty, Modularity lifting beyond the Taylor–Wiles method, Invent. Math. 211 (2018), no. 1, 297–433.

4. A. Caraiani, M. Emerton, T. Gee and D. Savitt, Moduli stacks of two-dimensional Galois representations, preprint (2019), https://arxiv.org/abs/1908.07019.

5. X. Caruso, Sur la classification de quelques ϕ-modules simples, Mosc. Math. J. 9 (2009), no. 3, 562–568.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3