Crepant resolutions and open strings

Author:

Brini Andrea1,Cavalieri Renzo2,Ross Dustin3

Affiliation:

1. Institut Montpelliérain Alexander Grothendieck, UMR 5149 du CNRS, Université de Montpellier, Place Eugène Bataillon, MontpellierCedex 5, France;Department of Mathematics, Imperial College London, 180 Queen’s Gate London SW7 2AZ, United Kingdom

2. Department of Mathematics, Colorado State University, 101 Weber Building, Fort Collins, CO 80523-1874, USA

3. Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA

Abstract

AbstractIn the present paper, we formulate a Crepant Resolution Correspondence for open Gromov–Witten invariants (OCRC) of toric Lagrangian branes inside Calabi–Yau 3-orbifolds by encoding the open theories into sections of Givental’s symplectic vector space. The correspondence can be phrased as the identification of these sections via a linear morphism of Givental spaces. We deduce from this a Bryan–Graber-type statement for disk invariants, which we extend to arbitrary topologies in the Hard Lefschetz case. Motivated by ideas of Iritani, Coates–Corti–Iritani–Tseng and Ruan, we furthermore propose (1) a general form of the morphism entering the OCRC, which arises from a geometric correspondence between equivariant K-groups, and (2) an all-genus version of the OCRC for Hard Lefschetz targets. We provide a complete proof of both statements in the case of minimal resolutions of threefold {A_{n}}-singularities; as a necessary step of the proof we establish the all-genus closed Crepant Resolution Conjecture with descendents in its strongest form for this class of examples. Our methods rely on a new description of the quantum D-modules underlying the equivariant Gromov–Witten theory of this family of targets.

Funder

National Science Foundation

FP7 People: Marie-Curie Actions

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference162 articles.

1. Gromov-Witten/Donaldson–Thomas correspondence for toric 3-folds;Invent. Math.,2008

2. On the convergence of Gromov–Witten potentials and Givental’s formula;Preprint,2012

3. Gromov–Witten invariants and quantization of quadratic Hamiltonians;Mosc. Math. J.,2001

4. Gromov–Witten invariants and quantization of quadratic Hamiltonians;Mosc. Math. J.,2001

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enumerative geometry of surfaces and topological strings;International Journal of Modern Physics A;2023-04-10

2. Mirror symmetry for extended affine Weyl groups;Journal de l’École polytechnique — Mathématiques;2022-05-31

3. Open-closed Gromov-Witten invariants of 3-dimensional Calabi-Yau smooth toric DM stacks;Forum of Mathematics, Sigma;2022

4. Enumeration of holomorphic cylinders in log Calabi–Yau surfaces, II : Positivity, integrality and the gluing formula;Geometry & Topology;2021-03-02

5. E8 spectral curves;Proceedings of the London Mathematical Society;2020-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3