Affiliation:
1. Chebyshev Lab. Department of Mathematics and Computer Sciences; Algebra and Number Theory Lab. , St. Petersburg University; St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences , 27, Fontanka, 191023 St. Petersburg , Russia
Abstract
Abstract
Morel’s stable connectivity theorem states the vanishing of the sheaves of the negative motivic homotopy groups
π
¯
i
s
(
Y
)
{\underline{\pi}^{s}_{i}(Y)}
and
π
¯
i
+
j
,
j
s
(
Y
)
{\underline{\pi}^{s}_{i+j,j}(Y)}
,
i
<
0
{i<0}
,
in the stable motivic homotopy categories
𝐒𝐇
S
1
(
k
)
{\mathbf{SH}^{S^{1}}(k)}
and
𝐒𝐇
(
k
)
{\mathbf{SH}(k)}
for an arbitrary smooth scheme Y over a field k.
Originally the same property was conjectured in the relative case over a base scheme S.
In view of Ayoub’s conterexamples the modified version of the conjecture states the vanishing
of stable motivic homotopy groups
π
¯
i
s
(
Y
)
{\underline{\pi}^{s}_{i}(Y)}
(and
π
¯
i
+
j
,
j
s
(
Y
)
{\underline{\pi}^{s}_{i+j,j}(Y)}
)
for
i
<
-
d
{i<-d}
, where
d
=
dim
S
{d=\dim S}
is the Krull dimension.
The latter version of the conjecture is proven over
noetherian domains of finite Krull dimension under the assumption that residue fields of the base scheme are infinite.
This is the result by J. Schmidt and F. Strunk for Dedekind schemes case,
and the result by N. Deshmukh, A. Hogadi, G. Kulkarni and S. Yadavand for the case of noetherian domains of an arbitrary dimension.
In the article, we prove the result for any locally noetharian base scheme of finite Krull dimension without the assumption on the residue fields, in particular for
𝐒𝐇
S
1
(
ℤ
)
{\mathbf{SH}^{S^{1}}(\mathbb{Z})}
and
𝐒𝐇
(
ℤ
)
{\mathbf{SH}(\mathbb{Z})}
.
In the appendix, we modify the arguments used for the main result to obtain the independent proof of Gabber’s Presentation Lemma over finite fields.
Funder
Russian Science Foundation
Subject
Applied Mathematics,General Mathematics
Reference20 articles.
1. A. Altman and S. Kleiman,
Introduction to Grothendieck duality theory,
Lecture Notes in Math. 146,
Springer, Berlin 1970.
2. M. Artin, A. Grothendieck and J.-L. Verdier,
Théorie des topos et cohomologie étale des schémas. Tome 3,
Lecture Notes in Math. 305,
Springer, Berlin 1973.
3. J. Ayoub,
Un contre-exemple à la conjecture de
𝔸
1
\mathbb{A}^{1}
-connexité de F. Morel,
C. R. Math. Acad. Sci. Paris 342 (2006), no. 12, 943–948.
4. J. Ayoub,
Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I,
Astérisque 315,
Société Mathématique de France, Paris 2007.
5. J.-L. Colliot-Thélène, R. T. Hoobler and B. Kahn,
The Bloch–Ogus–Gabber theorem,
Algebraic K-theory (Toronto 1996),
Fields Inst. Commun. 16,
American Mathematical Society, Providence (1997), 31–94.