Stable 𝔸1-connectivity over a base

Author:

Druzhinin Anderi Eduardovich1

Affiliation:

1. Chebyshev Lab. Department of Mathematics and Computer Sciences; Algebra and Number Theory Lab. , St. Petersburg University; St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences , 27, Fontanka, 191023 St. Petersburg , Russia

Abstract

Abstract Morel’s stable connectivity theorem states the vanishing of the sheaves of the negative motivic homotopy groups π ¯ i s ( Y ) {\underline{\pi}^{s}_{i}(Y)} and π ¯ i + j , j s ( Y ) {\underline{\pi}^{s}_{i+j,j}(Y)} , i < 0 {i<0} , in the stable motivic homotopy categories 𝐒𝐇 S 1 ( k ) {\mathbf{SH}^{S^{1}}(k)} and 𝐒𝐇 ( k ) {\mathbf{SH}(k)} for an arbitrary smooth scheme Y over a field k. Originally the same property was conjectured in the relative case over a base scheme S. In view of Ayoub’s conterexamples the modified version of the conjecture states the vanishing of stable motivic homotopy groups π ¯ i s ( Y ) {\underline{\pi}^{s}_{i}(Y)} (and π ¯ i + j , j s ( Y ) {\underline{\pi}^{s}_{i+j,j}(Y)} ) for i < - d {i<-d} , where d = dim S {d=\dim S} is the Krull dimension. The latter version of the conjecture is proven over noetherian domains of finite Krull dimension under the assumption that residue fields of the base scheme are infinite. This is the result by J. Schmidt and F. Strunk for Dedekind schemes case, and the result by N. Deshmukh, A. Hogadi, G. Kulkarni and S. Yadavand for the case of noetherian domains of an arbitrary dimension. In the article, we prove the result for any locally noetharian base scheme of finite Krull dimension without the assumption on the residue fields, in particular for 𝐒𝐇 S 1 ( ) {\mathbf{SH}^{S^{1}}(\mathbb{Z})} and 𝐒𝐇 ( ) {\mathbf{SH}(\mathbb{Z})} . In the appendix, we modify the arguments used for the main result to obtain the independent proof of Gabber’s Presentation Lemma over finite fields.

Funder

Russian Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3