Abstract
AbstractThe purpose of this paper is to study pro excision in algebraicK-theory and cyclic homology, after Suslin–Wodzicki, Cuntz–Quillen, Cortiñas, and Geisser–Hesselholt, as well as continuity properties of André–Quillen and Hochschild homology. A key tool is first to establish the equivalence of various pro Tor vanishing conditions which appear in the literature.This allows us to prove that all ideals of commutative, Noetherian rings are pro unital in a suitable sense. We show moreover that such pro unital ideals satisfy pro excision in derived Hochschild and cyclic homology. It follows hence, and from the Suslin–Wodzicki criterion, that ideals of commutative, Noetherian rings satisfy pro excision in derived Hochschild and cyclic homology, and in algebraicK-theory.In addition, our techniques yield a strong form of the pro Hochschild–Kostant–Rosenberg theorem; an extension to general base rings of the Cuntz–Quillen excision theorem in periodic cyclic homology; a generalisation of the Feĭgin–Tsygan theorem; a short proof of pro excision in topological Hochschild and cyclic homology; and new Artin–Rees and continuity statements in André–Quillen and Hochschild homology.
Subject
Applied Mathematics,General Mathematics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. K-THEORY OF NON-ARCHIMEDEAN RINGS II;Nagoya Mathematical Journal;2023-02-21
2. Milnor K-theory of p-adic rings;Journal für die reine und angewandte Mathematik (Crelles Journal);2022-12-09
3. On the Beilinson fiber square;Duke Mathematical Journal;2022-12-01
4. Categorical Milnor squares and K-theory of algebraic stacks;Selecta Mathematica;2022-09-21
5. -theory and topological cyclic homology of henselian pairs;Journal of the American Mathematical Society;2021-01-27