Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type

Author:

Ando Hiroshi1,Matsuzawa Yasumichi2,Thom Andreas3,Törnquist Asger4

Affiliation:

1. Department of Mathematics and Informatics, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-0022, Japan

2. Department of Mathematics, Faculty of Education, Shinshu University, 6-Ro, Nishinagano, NaganoCity 380-8544, Japan

3. Fachbereich Mathematik, Institut für Geometrie, TU Dresden, 01062Dresden, Germany

4. Department of Mathematical Sciences, University of Copenhagen, Universitetspark 5, 2100Copenhagen, Denmark

Abstract

AbstractLet Γ be a countable discrete group, and let {\pi\colon\Gamma\to{\rm{GL}}(H)} be a representation of Γ by invertible operators on a separable Hilbert space H. We show that the semidirect product group {G=H\rtimes_{\pi}\Gamma} is SIN (G admits a two-sided invariant metric compatible with its topology) and unitarily representable (G embeds into the unitary group {\mathcal{U}(\ell^{2}(\mathbb{N}))}) if and only if π is uniformly bounded, and that π is unitarizable if and only if G is of finite type, that is, G embeds into the unitary group of a {\mathrm{II}_{1}}-factor. Consequently, we show that a unitarily representable Polish SIN group need not be of finite type, answering a question of Sorin Popa. The key point in our argument is an equivariant version of the Maurey–Nikishin factorization theorem for continuous maps from a Hilbert space to the space {L^{0}(X,m)} of all measurable maps on a probability space.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference78 articles.

1. Means for the bounded functions and ergodicity of the bounded representations of semi-groups;Trans. Amer. Math. Soc.,1950

2. An analytic series of irreducible representations of the free group;Ann. Inst. Fourier (Grenoble),1988

3. Théorèmes de factorisation pour les opérateurs à valeurs dans un espace LpL^{p};Séminaire Maurey–Schwartz. Espaces LpL^{p} et applications radonifiantes. Année 1972–1973,1973

4. The Dixmier problem, lamplighters and Burnside groups;J. Funct. Anal.,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3