Curved Rickard complexes and link homologies

Author:

Cautis Sabin1,Lauda Aaron D.2,Sussan Joshua3

Affiliation:

1. Department of Mathematics, University of British Columbia, Vancouver, BC, Canada

2. Department of Mathematics, University of Southern California, Los Angeles, CA, USA

3. Department of Mathematics, CUNY Medgar Evers, Brooklyn, NY, USA

Abstract

AbstractRickard complexes in the context of categorified quantum groups can be used to construct braid group actions. We define and study certain natural deformations of these complexes which we call curved Rickard complexes. One application is to obtain deformations of link homologies which generalize those of Batson–Seed [3] [J. Batson and C. Seed, A link-splitting spectral sequence in Khovanov homology, Duke Math. J. 164 2015, 5, 801–841] and Gorsky–Hogancamp [E. Gorsky and M. Hogancamp, Hilbert schemes and y-ification of Khovanov–Rozansky homology, preprint 2017] to arbitrary representations/partitions. Another is to relate the deformed homology defined algebro-geometrically in [S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent sheaves IV, colored links, Quantum Topol. 8 2017, 2, 381–411] to categorified quantum groups (this was the original motivation for this paper).

Funder

National Science Foundation

Simons Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference80 articles.

1. An endomorphism of the Khovanov invariant;Adv. Math.,2005

2. HOMFLYPT homology of Coxeter links;Preprint,2017

3. Derived equivalences for symmetric groups and 𝔰⁢𝔩2{\mathfrak{sl}_{2}}-categorification;Ann. of Math. (2),2008

4. Deformation-obstruction theory for complexes via Atiyah and Kodaira–Spencer classes;Math. Ann.,2010

5. A categorification of the internal braid group action on quantum groups II: Compatibility with Rickard complexes;Preprint

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Link splitting deformation of colored Khovanov–Rozansky homology;Proceedings of the London Mathematical Society;2024-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3