Deformation theory of cohomological field theories

Author:

Dotsenko Vladimir1,Shadrin Sergey2,Vaintrob Arkady3,Vallette Bruno4

Affiliation:

1. Institut de Recherche Mathématique Avancée , UMR 7501 , Université de Strasbourg et CNRS , 7 rue René-Descartes, 67000 Strasbourg , France

2. Korteweg-de Vries Institute for Mathematics , University of Amsterdam , P. O. Box 94248, 1090 GE Amsterdam , The Netherlands

3. Department of Mathematics , University of Oregon , OR 97403 , Eugene , USA

4. Laboratoire de Géométrie, Analyse et Applications , LAGA, CNRS, UMR 7539 , Université Sorbonne Paris Nord , 93430 , Villetaneuse , France

Abstract

Abstract We develop the deformation theory of cohomological field theories (in short, CohFTs), which is done as a special case of a general deformation theory of morphisms of modular operads. This leads us to introduce two new natural extensions of the notion of a CohFT: homotopy (necessary algebraic toolkit to develop chain-level Gromov–Witten invariants) and quantum (with examples found in the works of Buryak and Rossi on integrable systems). The universal group of symmetries of morphisms of modular operads, based on Kontsevich’s graph complex, is shown to be trivial. Using the tautological rings on moduli spaces of curves, we introduce a natural enrichment of Kontsevich’s graph complex. This leads to universal groups of non-trivial symmetries of both homotopy and quantum CohFTs, which, in the latter case, is shown to contain both the prounipotent Grothendieck–Teichmüller group and the Givental group.

Publisher

Walter de Gruyter GmbH

Reference66 articles.

1. J. Alm and D. Petersen, Brown’s dihedral moduli space and freedom of the gravity operad, Ann. Sc. Éc. Norm. Supér. (4) 50 (2017), no. 5, 1081–1122.

2. E. Arbarello and M. Cornalba, Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves, J. Algebraic Geom. 5 (1996), no. 4, 705–749.

3. J. C. Baez and J. Dolan, Higher-dimensional algebra. III. n-categories and the algebra of opetopes, Adv. Math. 135 (1998), no. 2, 145–206.

4. S. Barannikov, Modular operads and Batalin–Vilkovisky geometry, Int. Math. Res. Not. IMRN 2007 (2007), no. 19, Article ID rnm075.

5. M. Batanin, J. Kock and M. Weber, Regular patterns, substitudes, Feynman categories and operads, Theory Appl. Categ. 33 (2018), 148–192.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3