Quadratic differentials as stability conditions: Collapsing subsurfaces

Author:

Barbieri Anna1ORCID,Möller Martin2,Qiu Yu3,So Jeonghoon2

Affiliation:

1. Dipartimento di Informatica – Settore Matematica , 19051 Università di Verona , Strada Le Grazie 15, 37134 Verona , Italy

2. Institut für Mathematik , Goethe-Universität Frankfurt , Robert-Mayer-Str. 6–8, 60325 Frankfurt am Main , Germany

3. Yau Mathematical Sciences Center and Department of Mathematical Sciences , 12442 Tsinghua University , 100084; and Beijing Institute of Mathematical Sciences and Applications, Yanqi Lake , Beijing , P. R. China

Abstract

Abstract We introduce a new class of triangulated categories, which are Verdier quotients of three-Calabi–Yau categories from (decorated) marked surfaces, and show that its spaces of stability conditions can be identified with moduli spaces of framed quadratic differentials on Riemann surfaces with arbitrary order zeros and arbitrary higher order poles. A main tool in our proof is a comparison of two exchange graphs, obtained by tilting hearts in the quotient categories and by flipping mixed angulations associated with the quadratic differentials.

Funder

European Research Council

Deutsche Forschungsgemeinschaft

National Key Research and Development Program of China

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3