Serre–Tate theory for Calabi–Yau varieties

Author:

Achinger Piotr1ORCID,Zdanowicz Maciej2ORCID

Affiliation:

1. Institute of Mathematics of the Polish Academy of Sciences , ul. Śniadeckich 8, 00-656 Warsaw , Poland

2. École Polytechnique Fédérale de Lausanne , Chair of Algebraic Geometry , MA C3 585 (Bâtiment MA), Station 8, CH-1015 Lausanne , Switzerland

Abstract

Abstract Classical Serre–Tate theory describes deformations of ordinary abelian varieties. It implies that every such variety has a canonical lift to characteristic zero and equips the base of its universal deformation with a Frobenius lifting and canonical multiplicative coordinates. A variant of this theory has been obtained for ordinary K3 surfaces by Nygaard and Ogus. In this paper, we construct canonical liftings modulo p 2 {p^{2}} of varieties with trivial canonical class which are ordinary in the weak sense that the Frobenius acts bijectively on the top cohomology of the structure sheaf. Consequently, we obtain a Frobenius lifting on the moduli space of such varieties. The quite explicit construction uses Frobenius splittings and a relative version of Witt vectors of length two. If the variety has unobstructed deformations and bijective first higher Hasse–Witt operation, the Frobenius lifting gives rise to canonical coordinates. One of the key features of our liftings is that the crystalline Frobenius preserves the Hodge filtration. We also extend Nygaard’s approach from K3 surfaces to higher dimensions, and show that no non-trivial families of such varieties exist over simply connected bases with no global one-forms.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference60 articles.

1. P. Achinger, J. Witaszek and M. Zdanowicz, Global Frobenius liftability II: Surfaces and Fano threefolds, preprint (2017), https://arxiv.org/abs/2102.02788.

2. P. Achinger, J. Witaszek and M. Zdanowicz, Global Frobenius liftability I, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 8, 2601–2648.

3. M. Artin and B. Mazur, Formal groups arising from algebraic varieties, Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), no. 1, 87–131.

4. P. Berthelot and A. Ogus, Notes on crystalline cohomology, Princeton University, Princeton 1978.

5. S. Bloch and K. Kato, p-adic étale cohomology, Publ. Math. Inst. Hautes Études Sci. 63 (1986), 107–152.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lifting globally -split surfaces to characteristic zero;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-08-14

2. Bogomolov’s inequality and Higgs sheaves on normal varieties in positive characteristic;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-01-30

3. Hodge numbers are not derived invariants in positive characteristic;Mathematische Annalen;2022-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3