Essential regularity of the model space for the Weil–Petersson metric

Author:

Daskalopoulos Georgios,Mese Chikako

Abstract

Abstract This is the second in a series of papers ([7] and [6] are the others) that studies the behavior of harmonic maps into the Weil–Petersson completion {\overline{\mathcal{T}}} of Teichmüller space. The boundary of {\overline{\mathcal{T}}} is stratified by lower-dimensional Teichmüller spaces and the normal space to each stratum is a product of copies of a singular space {\overline{\bf H}} called the model space. The significance of {\overline{\bf H}} is that it captures the singular behavior of the Weil–Petersson geometry of {\overline{\mathcal{T}}} . The main result of the paper is that certain subsets of {\overline{\bf H}} are essentially regular in the sense that harmonic maps to those spaces admit uniform approximation by affine functions. This is a modified version of the notion of essential regularity introduced by Gromov–Schoen in [12] for maps into Euclidean buildings and is one of the key ingredients in proving superrigidity. In the process, we introduce new coordinates on {\overline{\bf H}} and estimate the metric and its derivatives with respect to the new coordinates. These results form the technical core for studying the analytic behavior of harmonic maps into the completion of Teichmüller space and are utilized in our subsequent paper [6], where we prove the holomorphic rigidity of the Teichmüller space and several rigidity results for the mapping class group.

Funder

National Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference48 articles.

1. Curvarure properties of Teichmüller’s space;J. Anal. Math.,1961

2. On the singular set of harmonic maps into DM-complexes;Mem. Amer. Math. Soc.,2016

3. Weil–Petersson Completion of Teichmüller spaces;Math. Res. Lett.,2004

4. C1{C^{1}}-estimates for the Weil–Petersson metric;Trans. Amer. Math. Soc.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rectifiability of the Singular Set of Harmonic Maps into Buildings;The Journal of Geometric Analysis;2022-05-19

2. On the singular set of a nonlinear degenerate PDE arising in Teichmüller theory;Proceedings of the American Mathematical Society;2021-10-25

3. Harmonic branched coverings and uniformization of CAT(k) spheres;Journal für die reine und angewandte Mathematik (Crelles Journal);2021-07-01

4. Rigidity of Teichmüller space;Inventiones mathematicae;2020-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3