Rotational symmetry of Weingarten spheres in homogeneous three-manifolds

Author:

Gálvez José A.1,Mira Pablo2

Affiliation:

1. Departamento de Geometría y Topología , Universidad de Granada , Granada , Spain

2. Departamento de Matemática Aplicada y Estadística , Universidad Politécnica de Cartagena , Cartagena , Spain

Abstract

Abstract Let M be a simply connected homogeneous three-manifold with isometry group of dimension 4, and let Σ be any compact surface of genus zero immersed in M whose mean, extrinsic and Gauss curvatures satisfy a smooth elliptic relation Φ ( H , K e , K ) = 0 {\Phi(H,K_{e},K)=0} . In this paper we prove that Σ is a sphere of revolution, provided that the unique inextendible rotational surface S in M that satisfies this equation and touches its rotation axis orthogonally has bounded second fundamental form. In particular, we prove that: (i) Any elliptic Weingarten sphere immersed in 2 × {\mathbb{H}^{2}\times\mathbb{R}} is a rotational sphere. (ii) Any sphere of constant positive extrinsic curvature immersed in M is a rotational sphere. (iii) Any immersed sphere in M that satisfies an elliptic Weingarten equation H = ϕ ( H 2 - K e ) a > 0 {H=\phi(H^{2}-K_{e})\geq a>0} with ϕ bounded, is a rotational sphere. As a very particular case of this last result, we recover the Abresch–Rosenberg classification of constant mean curvature spheres in M.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference29 articles.

1. U. Abresch and H. Rosenberg, A Hopf differential for constant mean curvature surfaces in 𝐒 2 × 𝐑 {\mathbf{S}}^{2}\times{\mathbf{R}} and 𝐇 2 × 𝐑 {\mathbf{H}}^{2}\times{\mathbf{R}} , Acta Math. 193 (2004), no. 2, 141–174.

2. U. Abresch and H. Rosenberg, Generalized Hopf differentials, Mat. Contemp. 28 (2005), 1–28.

3. J. A. Aledo, J. M. Espinar and J. A. Gálvez, Complete surfaces of constant curvature in H 2 × 𝐑 H^{2}\times\mathbf{R} and S 2 × 𝐑 S^{2}\times\mathbf{R} , Calc. Var. Partial Differential Equations 29 (2007), no. 3, 347–363.

4. A. D. Aleksandrov, Uniqueness theorems for surfaces in the large. I, Vestnik Leningrad. Univ. 11 (1956), no. 19, 5-17

5. translation in Amer. Math. Soc. Transl. 21 (1962), 341-354.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3