Monoidal abelian envelopes with a quotient property

Author:

Coulembier Kevin1ORCID,Etingof Pavel2,Ostrik Victor3,Pauwels Bregje1

Affiliation:

1. School of Mathematics and Statistics , University of Sydney , Sydney , NSW 2006 , Australia

2. Department of Mathematics , MIT , Cambridge , MA 02139 , USA

3. Department of Mathematics , University of Oregon , Eugene , OR 97403 , USA

Abstract

Abstract We study abelian envelopes for pseudo-tensor categories with the property that every object in the envelope is a quotient of an object in the pseudo-tensor category. We establish an intrinsic criterion on pseudo-tensor categories for the existence of an abelian envelope satisfying this quotient property. This allows us to interpret the extension of scalars and Deligne tensor product of tensor categories as abelian envelopes, and to enlarge the class of tensor categories for which all extensions of scalars and tensor products are known to remain tensor categories. For an affine group scheme G, we show that pseudo-tensor subcategories of 𝖱𝖾𝗉 G {\operatorname{{\mathsf{Rep}}}G} have abelian envelopes with the quotient property, and we study many other such examples. This leads us to conjecture that all abelian envelopes satisfy the quotient property.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference28 articles.

1. H. H. Andersen, Tensor products of quantized tilting modules, Comm. Math. Phys. 149 (1992), no. 1, 149–159.

2. H. H. Andersen, The strong linkage principle for quantum groups at roots of 1, J. Algebra 260 (2003), 2–15.

3. Y. André and B. Kahn, Nilpotence, radicaux et structures monoïdales, Rend. Semin. Mat. Univ. Padova 108 (2002), 107–291.

4. D. Benson and P. Etingof, Symmetric tensor categories in characteristic 2, Adv. Math. 351 (2019), 967–999.

5. D. Benson, P. Etingof and V. Ostrik, New incompressible symmetric tensor categories in positive characteristic, preprint (2020), https://arxiv.org/abs/2003.10499.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Frobenius exact symmetric tensor categories;Annals of Mathematics;2023-05-01

2. Exactness and faithfulness of monoidal functors;Confluentes Mathematici;2023-03-13

3. Homological kernels of monoidal functors;Selecta Mathematica;2023-02-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3