Author:
Biswas Indranil,Dhillon Ajneet,Hoffmann Norbert
Abstract
AbstractWe characterize all fields of definition for a given coherent sheaf over a projective scheme in terms of projective modules over a finite-dimensional endomorphism algebra. This yields general results on the essential dimension of such sheaves. Applying them to vector bundles over a smooth projective curveC, we obtain an upper bound for the essential dimension of their moduli stack. The upper bound is sharp if the conjecture of Colliot-Thélène, Karpenko and Merkurjev holds. We find that the genericity property proved for Deligne–Mumford stacks by Brosnan, Reichstein and Vistoli still holds for this Artin stack, unless the curveCis elliptic.
Funder
Deutsche Forschungsgemeinschaft
Subject
Applied Mathematics,General Mathematics
Reference48 articles.
1. Rationality and Poincaré families for vector bundles with extra structure on a curve;Int. Math. Res. Not.,2007
2. Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques;Invent. Math.,1989
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献