Basis divisors and balanced metrics

Author:

Rubinstein Yanir A.1,Tian Gang2,Zhang Kewei3

Affiliation:

1. Department of Mathematics , University of Maryland , College Park , MD 20742 , USA

2. Beijing International Center for Mathematical Research , Peking University , Beijing , 100871 , P. R. China

3. School of Mathematical Sciences , Beijing Normal University , Beijing 100875 , P. R. China

Abstract

Abstract Using log canonical thresholds and basis divisors Fujita–Odaka introduced purely algebro-geometric invariants δ m {\delta_{m}} whose limit in m is now known to characterize uniform K-stability on a Fano variety. As shown by Blum–Jonsson this carries over to a general polarization, and together with work of Berman, Boucksom, and Jonsson, it is now known that the limit of these δ m {\delta_{m}} -invariants characterizes uniform Ding stability. A basic question since Fujita–Odaka’s work has been to find an analytic interpretation of these invariants. We show that each δ m {\delta_{m}} is the coercivity threshold of a quantized Ding functional on the mth Bergman space and thus characterizes the existence of balanced metrics. This approach has a number of applications. The most basic one is that it provides an alternative way to compute these invariants, which is new even for n {{\mathbb{P}}^{n}} . Second, it allows us to introduce algebraically defined invariants that characterize the existence of Kähler–Ricci solitons (and the more general g-solitons of Berman–Witt Nyström), as well as coupled versions thereof. Third, it leads to approximation results involving balanced metrics in the presence of automorphisms that extend some results of Donaldson.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A quantization proof of the uniform Yau–Tian–Donaldson conjecture;Journal of the European Mathematical Society;2023-08-02

2. The existence of the Kähler–Ricci soliton degeneration;Forum of Mathematics, Pi;2023

3. Pluripotential-Theoretic Stability Thresholds;International Mathematics Research Notices;2022-07-14

4. Balanced metrics for Kähler-Ricci solitons and quantized Futaki invariants;Journal of Functional Analysis;2022-04

5. Valuative Invariants with Higher Moments;The Journal of Geometric Analysis;2021-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3