1. L. Berger,
Représentations modulaires de
GL
2
(
Q
p
)
\mathrm{GL}_{2}(\mathbf{Q}_{p})
et représentations galoisiennes de dimension 2,
Astérisque 330 (2010), 263–279.
2. J.-E. Björk and E. K. Ekström,
Filtered Auslander–Gorenstein rings,
Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris 1989),
Progr. Math. 92,
Birkhäuser Boston, Boston (1990), 425–448.
3. C. Breuil,
Sur quelques représentations modulaires et 𝑝-adiques de
GL
2
(
Q
p
)
\mathrm{GL}_{2}(\mathbf{Q}_{p})
. I,
Compos. Math. 138 (2003), no. 2, 165–188.
4. C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen,
Conjectures and results on modular representations of
GL
n
\mathrm{GL}_{n}
of a 𝑝-adic field 𝐾, preprint (2021), https://arxiv.org/abs/2102.06188.
5. C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen,
Gelfand–Kirillov dimension and mod 𝑝 cohomology for
GL
2
\mathrm{GL}_{2}
,
Invent. Math. 234 (2023), no. 1, 1–128.