Lipschitz regularity of sub-elliptic harmonic maps into CAT(0) space

Author:

Assimos Renan1ORCID,Gui Yaoting2ORCID,Jost Jürgen3

Affiliation:

1. Faculty of Mathematics and Physics , Leibniz Universität , Welfengarten 130167 , Hannover , Germany

2. Beijing International Center for Mathematical Research , 593070 Peking University , Yiheyuan Road 5, 100871 , Beijing , P. R. China

3. Max Planck Institute for Mathematics in the Sciences , Inselstrasse 22, 04103 , Leipzig , Germany

Abstract

Abstract We prove the local Lipschitz continuity of sub-elliptic harmonic maps between certain singular spaces, more specifically from the 𝑛-dimensional Heisenberg group into CAT ( 0 ) \operatorname{CAT}(0) spaces. Our main theorem establishes that these maps have the desired Lipschitz regularity, extending the Hölder regularity in this setting proven in [Y. Gui, J. Jost and X. Li-Jost, Subelliptic harmonic maps with values in metric spaces of nonpositive curvature, Commun. Math. Res. 38 (2022), 4, 516–534] and obtaining same regularity as in [H.-C. Zhang and X.-P. Zhu, Lipschitz continuity of harmonic maps between Alexandrov spaces, Invent. Math. 211 (2018), 3, 863–934] for certain sub-Riemannian geometries; see also [N. Gigli, On the regularity of harmonic maps from RCD ( K , N ) \mathrm{RCD}(K,N) to CAT ( 0 ) \mathrm{CAT}(0) spaces and related results, preprint (2022), https://arxiv.org/abs/2204.04317; and A. Mondino and D. Semola, Lipschitz continuity and Bochner–Eells–Sampson inequality for harmonic maps from RCD ( k , n ) \operatorname{RCD}(k,n) spaces to CAT ( 0 ) \operatorname{CAT}(0) spaces, preprint (2022), https://arxiv.org/abs/2202.01590] for the generalisation to RCD spaces. The present result paves the way for a general regularity theory of sub-elliptic harmonic maps, providing a versatile approach applicable beyond the Heisenberg group.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3