A functorial approach to rank functions on triangulated categories

Author:

Conde Teresa1,Gorsky Mikhail2ORCID,Marks Frederik3,Zvonareva Alexandra4

Affiliation:

1. Fakultät für Mathematik , 229929 Universität Bielefeld , Universitätsstraße 25, 33615 , Bielefeld , Germany

2. Fakultät für Mathematik , 27258 Universität Wien , Oskar-Morgenstern-Platz 1, 1090 Wien , Austria

3. Institut für Algebra und Zahlentheorie , 9149 Universität Stuttgart , Pfaffenwaldring 57, 70569 Stuttgart , Germany

4. Institute of Mathematics , Czech Academy of Sciences , Žitná 25, 115 67 Praha 1 , Czech Republic ; and Institut für Algebra und Zahlentheorie, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

Abstract

Abstract We study rank functions on a triangulated category 𝒞 via its abelianisation mod C \operatorname{mod}\mathcal{C} . We prove that every rank function on 𝒞 can be interpreted as an additive function on mod C \operatorname{mod}\mathcal{C} . As a consequence, every integral rank function has a unique decomposition into irreducible ones. Furthermore, we relate integral rank functions to a number of important concepts in the functor category Mod C \operatorname{Mod}\mathcal{C} . We study the connection between rank functions and functors from 𝒞 to locally finite triangulated categories, generalising results by Chuang and Lazarev. In the special case C = T c \mathcal{C}=\mathcal{T}^{c} for a compactly generated triangulated category 𝒯, this connection becomes particularly nice, providing a link between rank functions on 𝒞 and smashing localisations of 𝒯. In this context, any integral rank function can be described using the composition length with respect to certain endofinite objects in 𝒯. Finally, if C = per ( A ) \mathcal{C}=\operatorname{per}(A) for a differential graded algebra 𝐴, we classify homological epimorphisms A B A\to B with per ( B ) \operatorname{per}(B) locally finite via special rank functions which we call idempotent.

Funder

Deutsche Forschungsgemeinschaft

Agence Nationale de la Recherche

H2020 European Research Council

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3