General rigidity principles for stable and minimal elastic curves

Author:

Miura Tatsuya1,Yoshizawa Kensuke2

Affiliation:

1. Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.Current address: Department of Mathematics, Graduate School of Science , Kyoto University , Kitashirakawa Oikawa-cho, Sakyo-ku , Kyoto 606-8502 , Japan

2. Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. Current address: Faculty of Education , Nagasaki University , 1-14 Bunkyo-machi , Nagasaki , 852-8521 , Japan

Abstract

Abstract For a wide class of curvature energy functionals defined for planar curves under the fixed-length constraint, we obtain optimal necessary conditions for global and local minimizers. Our results extend Maddocks’ and Sachkov’s rigidity principles for Euler’s elastica by a new, unified and geometric approach. This in particular leads to complete classification of stable closed p-elasticae for all p ( 1 , ) {p\in(1,\infty)} and of stable pinned p-elasticae for p ( 1 , 2 ] {p\in(1,2]} . Our proof is based on a simple but robust “cut-and-paste” trick without computing the energy nor its second variation, which works well for planar periodic curves but also extends to some non-periodic or non-planar cases. An analytically remarkable point is that our method is directly valid for the highly singular regime p ( 1 , 3 2 ] {p\in(1,\frac{3}{2}]} in which the second variation may not exist even for smooth variations.

Funder

Japan Society for the Promotion of Science

Publisher

Walter de Gruyter GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Elastic flow of curves with partial free boundary;Nonlinear Differential Equations and Applications NoDEA;2024-08-01

2. An obstacle problem for the p-elastic energy;Calculus of Variations and Partial Differential Equations;2024-06-24

3. Migrating elastic flows;Journal de Mathématiques Pures et Appliquées;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3