Affiliation:
1. Shanghai Center for Mathematical Sciences , Fudan University , Shanghai 200438 , P. R. China
Abstract
AbstractIn this paper, we study area-minimizing hypersurfaces in manifolds of Ricci curvature bounded below with Cheeger–Colding theory. LetNi{N_{i}}be a sequence of smooth manifolds with Ricci curvature≥-nκ2{\geq-n\kappa^{2}}onB1+κ′(pi){B_{1+\kappa^{\prime}}(p_{i})}for constantsκ≥0{\kappa\geq 0},κ′>0{\kappa^{\prime}>0}, and volume ofB1(pi){B_{1}(p_{i})}has a positive uniformly lower bound. AssumeB1(pi){B_{1}(p_{i})}converges to a metric ballB1(p∞){B_{1}(p_{\infty})}in the Gromov–Hausdorff sense. For a sequence of area-minimizing hypersurfacesMi{M_{i}}inB1(pi){B_{1}(p_{i})}with∂Mi⊂∂B1(pi){\partial M_{i}\subset\partial B_{1}(p_{i})}, we prove the continuity for the volume function of area-minimizing hypersurfaces equipped with the induced Hausdorff topology. In particular, each limitM∞{M_{\infty}}ofMi{M_{i}}is area-minimizing inB1(p∞){B_{1}(p_{\infty})}providedB1(p∞){B_{1}(p_{\infty})}is a smooth Riemannian manifold. By blowing up argument, we get sharp dimensional estimates for the singular set ofM∞{M_{\infty}}inℛ{\mathcal{R}}, and𝒮∩M∞{\mathcal{S}\cap M_{\infty}}. Here,ℛ{\mathcal{R}}and𝒮{\mathcal{S}}are the regular and singular parts ofB1(p∞){B_{1}(p_{\infty})}, respectively.
Subject
Applied Mathematics,General Mathematics