Area-minimizing hypersurfaces in manifolds of Ricci curvature bounded below

Author:

Ding Qi1ORCID

Affiliation:

1. Shanghai Center for Mathematical Sciences , Fudan University , Shanghai 200438 , P. R. China

Abstract

AbstractIn this paper, we study area-minimizing hypersurfaces in manifolds of Ricci curvature bounded below with Cheeger–Colding theory. LetNi{N_{i}}be a sequence of smooth manifolds with Ricci curvature-nκ2{\geq-n\kappa^{2}}onB1+κ(pi){B_{1+\kappa^{\prime}}(p_{i})}for constantsκ0{\kappa\geq 0},κ>0{\kappa^{\prime}>0}, and volume ofB1(pi){B_{1}(p_{i})}has a positive uniformly lower bound. AssumeB1(pi){B_{1}(p_{i})}converges to a metric ballB1(p){B_{1}(p_{\infty})}in the Gromov–Hausdorff sense. For a sequence of area-minimizing hypersurfacesMi{M_{i}}inB1(pi){B_{1}(p_{i})}withMiB1(pi){\partial M_{i}\subset\partial B_{1}(p_{i})}, we prove the continuity for the volume function of area-minimizing hypersurfaces equipped with the induced Hausdorff topology. In particular, each limitM{M_{\infty}}ofMi{M_{i}}is area-minimizing inB1(p){B_{1}(p_{\infty})}providedB1(p){B_{1}(p_{\infty})}is a smooth Riemannian manifold. By blowing up argument, we get sharp dimensional estimates for the singular set ofM{M_{\infty}}in{\mathcal{R}}, and𝒮M{\mathcal{S}\cap M_{\infty}}. Here,{\mathcal{R}}and𝒮{\mathcal{S}}are the regular and singular parts ofB1(p){B_{1}(p_{\infty})}, respectively.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3