Ambitoric geometry I: Einstein metrics and extremal ambikähler structures

Author:

Apostolov Vestislav,Calderbank David M. J.,Gauduchon Paul

Abstract

AbstractWe present a local classification of conformally equivalent but oppositely oriented 4-dimensional Kähler metrics which are toric with respect to a common 2-torus action. In the generic case, these “ambitoric” structures have an intriguing local geometry depending on a quadratic polynomialWe use this description to classify 4-dimensional Einstein metrics which are hermitian with respect to both orientations, as well as a class of solutions to the Einstein–Maxwell equations including riemannian analogues of the Plebański–Demiański metrics. Our classification can be viewed as a riemannian analogue of a result in relativity due to R. Debever, N. Kamran, and R. McLenaghan, and is a natural extension of the classification of selfdual Einstein hermitian 4-manifolds, obtained independently by R. Bryant and the first and third authors.These Einstein metrics are precisely the ambitoric structures with vanishing Bach tensor, and thus have the property that the associated toric Kähler metrics are extremal (in the sense of E. Calabi). Our main results also classify the latter, providing new examples of explicit extremal Kähler metrics. For both the Einstein–Maxwell and the extremal ambitoric structures,

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference92 articles.

1. Extremal Kähler metrics on ruled manifolds and stability;Géométrie différentielle, physique mathématique, mathématiques et socété,2008

2. Einstein metrics on complex surfaces;Geometry and physics,1997

3. Extremal Kähler metrics II;Differential geometry and complex analysis,1985

4. Kähler geometry of toric varieties and extremal metrics;Internat. J. Math.,1998

5. Extremal Kähler metrics on minimal ruled surfaces;J. reine angew. Math.,1998

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Families of degenerating Poincaré–Einstein metrics on $$\mathbb {R}^4$$;Annals of Global Analysis and Geometry;2023-12-06

2. About a Family of ALF Instantons with Conical Singularities;Symmetry, Integrability and Geometry: Methods and Applications;2023-10-20

3. Globally conformally Kähler Einstein metrics on certain holomorphic bundles;Annali di Matematica Pura ed Applicata (1923 -);2022-10-12

4. Para-Kähler-Einstein 4-manifolds and non-integrable twistor distributions;Geometriae Dedicata;2022-01-04

5. Conformally Kähler, Einstein–Maxwell metrics on Hirzebruch surfaces;Annals of Global Analysis and Geometry;2021-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3