Hyperkähler metrics near Lagrangian submanifolds and symplectic groupoids

Author:

Mayrand Maxence1ORCID

Affiliation:

1. Department of Mathematics , University of Toronto , Toronto , Canada

Abstract

Abstract The first part of this paper is a generalization of the Feix–Kaledin theorem on the existence of a hyperkähler metric on a neighborhood of the zero section of the cotangent bundle of a Kähler manifold. We show that the problem of constructing a hyperkähler structure on a neighborhood of a complex Lagrangian submanifold in a holomorphic symplectic manifold reduces to the existence of certain deformations of holomorphic symplectic structures. The Feix–Kaledin structure is recovered from the twisted cotangent bundle. We then show that every holomorphic symplectic groupoid over a compact holomorphic Poisson surface of Kähler type has a hyperkähler structure on a neighborhood of its identity section. More generally, we reduce the existence of a hyperkähler structure on a symplectic realization of a holomorphic Poisson manifold of any dimension to the existence of certain deformations of holomorphic Poisson structures adapted from Hitchin’s unobstructedness theorem.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3