Affiliation:
1. CIRGET , Université du Québec à Montréal , 201 avenue du Président Kennedy, H2X 3Y7 , Montréal , Canada
Abstract
Abstract
We study a system of equations on a compact complex manifold, that couples the scalar curvature of a Kähler metric with a spectral function of a first-order deformation of the complex structure. The system comes from an infinite-dimensional Kähler reduction, which is a hyperkähler reduction for a particular choice of the spectral function. The main tool for studying the system is a flat connection on the space of first-order deformations of the complex structure, that allows to obtain a formal complexification of the moment map equations. Using this connection, we describe a variational characterization of the equations, a Futaki invariant for the system, and a generalization of K-stability that is conjectured to characterize the existence of solutions.
Subject
Applied Mathematics,General Mathematics
Reference25 articles.
1. O. Biquard and P. Gauduchon,
Hyper-Kähler metrics on cotangent bundles of Hermitian symmetric spaces,
Geometry and physics (Aarhus 1995),
Lecture Notes Pure Appl. Math. 184,
Dekker, New York (1997), 287–298.
2. J.-P. Bourguignon,
Invariants intégraux fonctionnels pour des équations aux dérivées partielles d’origine géométrique,
Partial differential equations. Part 1, 2,
Banach Center Publ. 27,
Polish Academy of Sciences, Warsaw (1992), 65–73.
3. A. Cannas da Silva,
Lectures on symplectic geometry,
Lecture Notes in Math. 1764,
Springer, Berlin 2001.
4. R. Dervan and P. Naumann,
Moduli of polarised manifolds via canonical Kähler metrics,
preprint (2018), https://arxiv.org/abs/1810.02576v3.
5. R. Dervan and J. Ross,
K-stability for Kähler manifolds,
Math. Res. Lett. 24 (2017), no. 3, 689–739.