Author:
Milanov Todor,Ruan Yongbin,Shen Yefeng
Abstract
AbstractIn this paper, we review Teleman’s work on lifting Givental’s quantization of{\mathcal{L}^{(2)}_{+}{\rm GL}(H)}action for semisimple formal Gromov–Witten potential into cohomological field theory level. We apply this to obtain a global cohomological field theory for simple elliptic singularities. The extension of those cohomological field theories over large complex structure limit are mirror to cohomological field theories from elliptic orbifold projective lines of weight(3,3,3),(2,4,4),(2,3,6). Via mirror symmetry, we prove generating functions of Gromov–Witten cycles for those orbifolds are cycle-valued (quasi)-modular forms.
Funder
Japan Society for the Promotion of Science
National Science Foundation
Subject
Applied Mathematics,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献