Assembly maps for topological cyclic homology of group algebras

Author:

Lück Wolfgang1,Reich Holger2,Rognes John3,Varisco Marco4

Affiliation:

1. Hausdorff Research Institute for Mathematics, Bonn; and Mathematisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany

2. Institut für Mathematik, Freie Universität Berlin, Berlin, Germany

3. Department of Mathematics, University of Oslo, Oslo, Norway

4. Department of Mathematics and Statistics, University at Albany, SUNY, Albany, NY, USA

Abstract

AbstractWe use assembly maps to study \mathbf{TC}(\mathbb{A}[G];p), the topological cyclic homology at a prime p of the group algebra of a discrete group G with coefficients in a connective ring spectrum \mathbb{A}. For any finite group, we prove that the assembly map for the family of cyclic subgroups is an isomorphism on homotopy groups. For infinite groups, we establish pro-isomorphism, (split) injectivity, and rational injectivity results, as well as counterexamples to injectivity and surjectivity. In particular, for hyperbolic groups and for virtually finitely generated abelian groups, we show that the assembly map for the family of virtually cyclic subgroups is injective but in general not surjective.

Funder

Deutsche Forschungsgemeinschaft

Simons Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference82 articles.

1. On the algebraic K-theory of truncated polynomial algebras in several variables;J. K-Theory,2014

2. Algebraic K-theory of topological K-theory;Acta Math.,2002

3. On the algebraic K-theory of truncated polynomial algebras in several variables;J. K-Theory,2014

4. A note on orbit categories, classifying spaces, and generalized homotopy fixed points;Preprint,2017

5. The Baum–Connes and the Farrell–Jones conjectures in K- and L-theory;Handbook of K-theory. Vol. 2,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linear Groups, Conjugacy Growth, and Classifying Spaces for Families of Subgroups;International Mathematics Research Notices;2017-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3