Geometric and spectral estimates based on spectral Ricci curvature assumptions

Author:

Carron Gilles1,Rose Christian2

Affiliation:

1. Université de Nantes , Département de Mathématiques , 2 rue de la Houssinière, BP 92208,44322 Nantes cedex 03 , France

2. Max Planck Institute for Mathematics in the Sciences , Inselstraße 22, 04103 Leipzig , Germany

Abstract

AbstractWe obtain a Bonnet–Myers theorem under a spectral condition: a closed Riemannian(Mn,g){(M^{n},g)}manifold for which the lowest eigenvalue of the Ricci tensor ρ is such that the Schrödinger operatorΔ+(n-2)ρ{\Delta+(n-2)\rho}is positive has finite fundamental group. Further, as a continuation of our earlier results, we obtain isoperimetric inequalities from Kato-type conditions on the Ricci curvature. We also obtain the Kato condition for the Ricci curvature under purely geometric assumptions.

Funder

Agence Nationale de la Recherche

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference37 articles.

1. M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), no. 2, 209–273.

2. E. Aubry, Finiteness of π 1 \pi_{1} and geometric inequalities in almost positive Ricci curvature, Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), no. 4, 675–695.

3. E. Aubry, Bounds on the volume entropy and simplicial volume in Ricci curvature L p L^{p} -bounded from below, Int. Math. Res. Not. IMRN 2009 (2009), no. 10, 1933–1946.

4. D. Bakry, L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory (Saint-Flour 1992), Lecture Notes in Math. 1581, Springer, Berlin (1994), 1–114.

5. D. Bakry and M. Ledoux, Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator, Duke Math. J. 85 (1996), no. 1, 253–270.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heat kernel bounds and Ricci curvature for Lipschitz manifolds;Stochastic Processes and their Applications;2024-04

2. Ricci Flow Under Kato-Type Curvature Lower Bound;The Journal of Geometric Analysis;2024-01-10

3. Quantitative Sobolev Extensions and the Neumann Heat Kernel for Integral Ricci Curvature Conditions;The Journal of Geometric Analysis;2022-12-19

4. Torus stability under Kato bounds on the Ricci curvature;Journal of the London Mathematical Society;2022-12-10

5. Eigenvalue estimates for Kato-type Ricci curvature conditions;Analysis & PDE;2022-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3