On the long time behaviour of the conical Kähler–Ricci flows

Author:

Chen Xiuxiong,Wang Yuanqi

Abstract

Abstract We prove that the conical Kähler–Ricci flows introduced in [11] exist for all time {t\in[0,+\infty)} . These immortal flows possess maximal regularity in the conical category. As an application, we show if the twisted first Chern class {C_{1,\beta}} is negative or zero, the corresponding conical Kähler–Ricci flows converge to Kähler–Einstein metrics with conical singularities exponentially fast. To establish these results, one of our key steps is to prove a Liouville-type theorem for Kähler–Ricci flat metrics (which are defined over {\mathbb{C}^{n}} ) with conical singularities.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference80 articles.

1. On the Ricci curvature of a compact Kähler manifold and the complex Monge Ampère equation I;Comm. Pure Appl. Math.,1978

2. Smooth approximations of the Conical Kähler–Ricci flows;Preprint,2014

3. Bounds on volume growth of geodesic balls under Ricci flow;Math. Res. Lett.,2012

4. On the conditions to extend Ricci flow (III);Int. Math. Res. Not. IMRN,2013

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Schauder estimates for equations with cone metrics, II;Analysis & PDE;2024-04-24

2. A C 2,α,β estimate for complex Monge–Ampère type equations with conic sigularities;Advanced Nonlinear Studies;2024-02-01

3. Analysis Aspects of Ricci Flow on Conical Surfaces;Acta Mathematica Sinica, English Series;2022-02-17

4. Canonical Identification at Infinity for Ricci-Flat Manifolds;The Journal of Geometric Analysis;2021-12-02

5. The Green’s function for equations with conic metrics;Calculus of Variations and Partial Differential Equations;2021-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3