Affiliation:
1. Dipartimento di Matematica , Università di Roma , Piazzale Aldo Moro, 2, 00185 Roma , Italy
Abstract
Abstract
A subvariety of a quasi-projective complex variety X
is called “universally irreducible” if its preimage inside
the universal cover of X is irreducible.
In this paper we investigate sufficient conditions for universal irreducibility.
We consider in detail complete intersection subvarieties of small codimension
inside Siegel moduli spaces of any finite level.
Moreover, we show
that, for
g
≥
3
{g\geq 3}
, every Siegel modular form is the product of finitely many
irreducible analytic functions on the Siegel upper half-space
ℍ
g
{{\mathbb{H}}_{g}}
.
We also discuss the special case of singular theta series of weight
1
2
{\frac{1}{2}}
and of Schottky forms.
Subject
Applied Mathematics,General Mathematics
Reference33 articles.
1. N. A’Campo,
Tresses, monodromie et le groupe symplectique,
Comment. Math. Helv. 54 (1979), no. 2, 318–327.
2. D. Allcock, J. A. Carlson and D. Toledo,
The moduli space of cubic threefolds as a ball quotient,
Mem. Amer. Math. Soc. 209 (2011), no. 985, 1–70.
3. J. Amorós, M. Burger, K. Corlette, D. Kotschick and D. Toledo,
Fundamental groups of compact Kähler manifolds,
Math. Surveys Monogr. 44,
American Mathematical Society, Providence 1996.
4. A. Andreotti and A. L. Mayer,
On period relations for abelian integrals on algebraic curves,
Ann. Sc. Norm. Super. Pisa Cl. Sci. (3) 21 (1967), 189–238.
5. H. Bass, J. Milnor and J.-P. Serre,
Solution of the congruence subgroup problem for
SL
n
(
n
≥
3
)
{\rm SL}_{n}\,(n\geq 3)
and
Sp
2
n
(
n
≥
2
)
{\rm Sp}_{2n}\,(n\geq 2)
,
Publ. Math. Inst. Hautes Études Sci. 33 (1967), 59–137.